
The 3rd International Workshop

PROCEEDINGS

PATRONAGE

Dew Computing
(DEWCOM 2018)
Editors: Yingwei Wang and Karolj Skala

EWD
IEEE STC

Com

Toronto Canada
29th-30th October 2018

Table of Contents

Preface . ii

Program Committee . iv

Program Schedule . v

Edge and Dew Computing for Streaming IoT. 1

Marjan Gusev

Formal Description of Dew Computing . 8

Marjan Gusev and Yingwei Wang

Enhancing Usability of Cloud Storage Clients with Dew Computing . 14

Tushar Mane, Himanshu Agrawal and Gurmeet Sigh Gill

Overview of Cloudlet, Fog Computing, Edge Computing, and Dew Computing. 20

Yi Pan, Parimala Thulasiraman and Yingwei Wang

DewCom STC Introduction Page . 24

DewCom STC Committee

The Rainbow Global Service Ecosystem . 25

Karolj Skala and Zorislav Sojat

Vehicular Data Analytics Dew Computing. 31

Parimala Thulasiraman, Ruppa Thulasiram and Ying Ying Liu

Dewblock: A Blockchain System Based on Dew Computing . 34

Yingwei Wang

Keyword Index. 39

i

Preface

This volume contains the papers presented at DEWCOM 2018: The 3rd International Workshop
on Dew Computing held on October 29-30, 2018 in Toronto, Canada.

DEWCOM is an annual international workshop on dew computing. The first one, DEWCOM
2016, was held in Charlottetown, Canada. The second one, DEWCOM 2017, was held in Opa-
tija, Croatia. DEWCOM 2018 was the third one in this series, and it was held together with the
28th Annual International Conference on Computer Science and Software Engineering (CAS-
CON 2018).

Dew computing is a new post-cloud computing model appeared in 2015. While cloud com-
puting uses centralized servers to provide various services, dew computing uses on-premises
computers to provide decentralized, cloud-friendly, and collaborative micro services to end-
users.

Dew computing is an on-premises computer software-hardware organization paradigm in
the cloud computing environment, which does not contradict with cloud computing, does not
replace cloud computing, but it is complementary to cloud computing. The key features of dew
computing are that on-premises computers provide functionality independent of cloud services
and they also collaborate with cloud services. Briefly speaking, dew computing is an organized
way of using local computers in the age of cloud computing.

DEWCOM 2018 was organized by IEEE Computer Society Dew Computing Special Techni-
cal Community (DewCom STC). Currently, DewCom STC members are spread in 19 different
countries: Canada, USA, Croatia, Austria, Germany, Romania, Sweden, Ukraine, United Arab
Emirates, United Kingdom, Argentina, Colombia, El Salvador, China, India, Pakistan, Austra-
lia, Macedonia, and Nepal. More and more people are joining the dew computing community
to get involved in research and development activities.

Each submission to DEWCOM 2018 was peer-reviewed by two or three reviewers. The
committee decided to accept 8 papers. This proceedings included 7 of the accepted papers.
These papers can be classified into the following three categories: dew computing models, dew
computing formal descriptions, and dew computing applications.

In the dew computing models category, three papers were included in this proceedings.
“Overview of Cloudlet, Fog Computing, Edge Computing, and Dew Computing” by Pan, Thu-
lasiraman and Wang and “Edge and Dew Computing for Streaming IoT” by Gusev provided
some viewpoints to observe the features and differences among post-cloud computing models.
“The Rainbow Global Service Ecosystem” by Skala and Sojat discussed the future forms of
computing organizations.

Dew computing formal descriptions is a new category. “Formal Description of Dew Compu-
ting” by Gusev and Wang proposed a formal description of dew computing. It could be helpful
for researchers and professionals to get a better understanding to dew computing and enhance
research in this area.

Dew computing applications is the biggest category. “Edge and Dew Computing for Stre-
aming IoT” by Gusev involved IoT streaming applications; “Enhancing Usability of Cloud
Storage Clients with Dew Computing” by Mane, Agrawal and Gill proposed an improvement
to existing Storage in Dew (STiD) applications; “Vehicular Data Analytics Dew Computing” by
Thulasiraman, Thulasiram and Liu used dew computing in intelligent transportation systems;
“Dewblock: A Blockchain System Based on Dew Computing” by Wang applied dew computing
to blockchain technology and provided source code of such a new application. All these new
applications show that dew computing has inspiring power in solving real-world problems.

We want to express our gratitude to our sponsors: IBM Centre for Advanced Studies, CAS-

ii

CON 2018, and the School of Mathematical and Computational Sciences at the University of
Prince Edward Island, Canada. Without their generous support, it would not be possible for
DEWCOM 2018 to reach its goals. We also want to express our appreciation to Easychair.org;
their support makes our program organization much easier.

October 30, 2018
Toronto, Ontario, Canada

DEWCOM 2018 Co-Chairs:
Yingwei Wang, University of Prince

Edward Island, Canada
Karolj Skala, Ruder Boskovic

Institute, Croatia

iii

Program Committee

Yi Pan Georgia State University, USA (Chair)
Marjan Gushev Ss. Cyril and Methodius University, Macedonia
Shuhui Yang Purdue University Northwest, USA
Ralph Deters University of Saskatchewan, Canada
Andy Rindos IBM Emerging Technology Institute, USA
Enis Afgan Johns Hopkins University, USA
Sven Groppe University of Lbeck, Germany
Chrysanne Dimarco University of Waterloo, Canada
Dana Petcu West University of Timisoara, Romania
Parimala Thulasiram University of Manitoba, Canada
Karolj Skala Ruder Boskovic Institute, Croatia
Yingwei Wang University of Prince Edward Island, Canada

iv

Program Schedule

Session 1 3:15 - 5:15pm. Oct. 29, 2018. Meeting Room Elm 2
Session Chair Karolj Skala
Tutorial Dew Computing Introduction (Yingwei Wang and Karolj Skala)
Paper Presentation Dewblock: A Blockchain System Based on Dew Computing (Yingwei

Wang)

Session 2 8:30 - 10:00am. Oct. 30, 2018. Meeting Room Elm 1
Session Chair Marjan Gusev
Paper Presentation The Rainbow Global Service Ecosystem (Karolj Skala and Zorislav So-

jat)
Paper Presentation Vehicular Data Analytics Dew Computing (Parimala Thulasiraman,

Ruppa Thulasiram and Ying Ying Liu)

Session 3 10:30am - 12:00pm. Oct. 30, 2018. Meeting Room Elm 1
Session Chair Parimala Thulasiraman
Paper Presentation Formal Description of Dew Computing (Marjan Gusev and Yingwei

Wang)
Paper Presentation Enhancing Usability of Cloud Storage Clients with Dew Computing

(Tushar Mane, Himanshu Agrawal and Gurmeet Sigh Gill)
Paper Presentation Edge and Dew Computing for Streaming IoT (Marjan Gusev)

Session 4 1:00 - 2:00pm. Oct. 30, 2018. Meeting Room Elm 1
Session Chair Ralph Deters
Paper Presentation Overview of Cloudlet, Fog Computing, Edge Computing, and Dew

Computing (Yi Pan, Parimala Thulasiraman and Yingwei Wang)

Session 5 2:00 - 3:00pm. Oct. 30, 2018. Meeting Room Elm 1
Session Chair Yi Pan
Discussion Dew Computing Development Strategies

Session 6 3:30 - 5:30pm. Oct. 30, 2018. Meeting Room Elm 1
Committee Meeting DewCom STC Committee 1st Face-to-face Meeting

v

Edge and Dew Computing for Streaming IoT
Marjan Gusev

University Ss Cyril and Methodius
Skopje, Macedonia

Email: marjan.gushev@finki.ukim.mk

Abstract—The main question in the case of streaming data
coming from end-user IoT devices with big quantities is where to
process data. The available choices are whether the processing of
the required information should take place on a local device or to
offload data to a nearby or remote server for further processing.
Basic IoT schemes include only local processing, while more
sophisticated schemes include offloading to nearby servers on the
edge of the network, or to remote distant cloud servers. In this
paper, we analyze the implementation details and organizational
approaches related to dew computing, where the processing
is brought even closer to the user than the edge computing
concept. The relevant features will be compared to classical
edge approaches, such as cloudlets, fog computing, mobile edge
computing or similar computer architecture approaches.

Index Terms—Mobile Cloud Computing, Cloudlet, Edge com-
puting, Fog computing, computation offload

I. INTRODUCTION

Computing devices are embedded in almost all end-user
devices used in everyday activities. With the growth of the
Internet and the advances of modern technology, users can
control and use these devices over the Internet. This is the basis
of the Internet of Things (IoT) as an organized interconnection
of all these devices [1], as independent computing devices that
function in a shared environment over the Internet.

In this research, we address issues that arise with IoT
devices that generate data with high volumes and velocity,
characterizing them in the Big Data concept as they need
computing units that provide fast processing and massive
storage capacities. In addition, another problem arises when
the user tries to use them as independent battery-operated
mobile devices with a wireless connection. It requires special
designs, so the IoT devices will be relieved of all tasks that
consume a lot of energy.

An example of such a device is a wearable eHealth or
ECG sensor. It is a small device that can be patched on a
user’s chest. To make it more comfortable, it needs a very
small weight and small size, such that will not cause any
obstacles for user daily activities and movements. Therefore,
the designers of such a device face the constraint of using a
very small battery that should be recharged on a couple of
days, for example, a week. The device needs to process a lot
of data generated as a 2-byte integer samples on a regular
sampling frequency higher than 250 Hz, which will generate
a data stream with a rate of 30 KB per minute, and storage
demands of 1.8 MB per hour or 54 MB per day. Essential data
processing and diagnosis may require up to 500 executable
commands per sample, so the processing needs a processing

power of at least 125.000 operations per second, excluding the
operations required by the operating system. Although it may
not look so demanding for a modern computer, still it will
spend a lot of energy on a smaller embedded sensor, and will
not fit in the constraint for a small battery.

Offloading is a promising alternative, but still, the users
are concerned when to offload and where to offload. This
paper analyzes several different approaches and architectural
designs. A comprehensive comparison is provided to discuss
all relevant issues and help a solution provider how to or-
ganize the computing, storage in order to minimize energy
consumption of the end-user IoT device without degrading
the performances of the application.

The main concepts of dew and edge computing are com-
pared to distinguish between different designs and approaches.
In this paper, we will explain what is the difference between
edge and dew computing, and answer where and when to
offload. We will present differences in design and implemen-
tation, addressing the application domains.

The paper organization is as follows. Section II gives a state-
of-the-art and related work on edge and dew computing archi-
tectural concepts. Our view and distinction between different
architectural approaches are explained in Section III followed
by a discussion in Section IV. Finally, relevant conclusions
and future work directions are given in Section V.

II. RELATED WORK

Streaming IoT solutions belong to a wider class of ubiqui-
tous and pervasive computing solutions for IoT devices [2].
A streaming IoT device is considered to be a device that
generates at least 100 samples per seconds [3], [4].

The first idea to offload data and computations initiates a
cloud server connection to a mobile device. The mobile device
is considered to be the end-user IoT device and the cloud
server is the computing unit that will process streaming data.

Dinh et al. [5] discuss the advantages of dynamic pro-
visioning, scalability, multitenancy, and ease of integration
for related mobile cloud computing applications. Issues that
need to be addressed in the mobile cloud computing include
low bandwidth, availability, heterogeneity, static and dynamic
environments in computation offloading, security, privacy and
other quality of service and related open issues.

In addition, the presented architecture does not address
wearable mobile IoT devices with limited power supply capa-
bilities and small computing capacities. This is why the edge
computing is introduced as an architecture solution [6].

1

A. Edge Computing
The focus of architectures and computer implementations

has shifted towards gaining real-time responses along with
support for context-awareness and mobility in the IoT [7],
enabled by edge computing.

The edge computing technology promises to deliver highly
responsive cloud services for mobile computing, scalability
and privacy-policy enforcement for the IoT, and the ability to
mask transient cloud outages. Satyanarayanan [8] elaborates
that the idea of caching is used in edge computing for caching
the cloud services.

Edge computing pushes the cloud services closer to the user
and also pulls the IoT micro-services from IoT devices [9]. It
changes the vision of data consumer to data producer of an
IoT device.

Two approaches dominate the use of edge computing ar-
chitectural organizations. They differ by the implementation
provider [10], [4], so if the mobile operator is providing an
infrastructure, then it is a basis of fog computing and if an
Internet provider uses LAN networking for the edge devices,
then it is a cloudlet solution. Some authors find these terms
to be synonyms to edge computing [11].

Satyanarayanan [12] specifies a cloudlet as an infrastructure
based on a virtual machine located in the proximity of the
end-user device accessed in a LAN environment. Verbelen et
al. [13] describe that the cloudlets do not have to be fixed
infrastructure close to the wireless access point, but can be
formed in a dynamic way with any device in the LAN network
with available resources.

Cloudlet challenges have been analyzed [14] for their
architectural and implementation issues. The corresponding
definition clearly identifies another architectural layer between
the cloud server and the end-user device.

Bonomi et al. [15] define essential fog computing concepts
setting servers at the base stations to reduce the latencies and
distribute the processing in a number of IoT applications.

Chiang and Zhang [16] analyze the latency requirements
and bandwidth constraints in the context of IoT resource-
constrained devices, along with other non-functional issues
including security and protection.

Some authors use the fog computing concept simply to
present the realization of computer communication infras-
tructure with routers, switches, access points, and gateways,
and others as computing nodes at the edge of the mobile
network. Therefore, some authors think that the fog concept
is equal to the edge computing concept in the context of
computing, similar to the concept of servers used in mobile
edge computing. Other authors observe the fog computing only
as a communication infrastructure.

Another related concept is the mobile edge computing aim-
ing at reducing network stress by shifting computational efforts
from the Internet to the mobile operator’s edge. Although ac-
cording to the previous understanding of fog computing as an
edge computing communication infrastructure, the complete
idea of mobile edge computing is an application of the fog
computing concept.

An early definition of mobile edge computing can be
found in several papers, although some of these definitions
in our context are a specification of dew computing. For
example, Kim et al. [17] introduce the concept of Mobile
Edge Computing Devices as an interface between distributed
sensors and the end server in order to reduce processing
and bandwidth requirements to the end servers, and provide
enhanced scalability, flexibility, reliability, and cost-efficiency.

ETSI [18] tries to standardize it as a key technology towards
5G, to provide an IT service environment and cloud-computing
capabilities at the edge of the mobile network and in close
proximity to mobile subscribers, aiming at reducing the latency
and improving the user experience. In addition, ETSI [18]
designs it as a natural development in the evolution of mobile
base stations and the convergence of IT and telecommunica-
tions networking by using virtualized environments.

Mobile edge computing is able to provide IoT services,
which are not technically or economically feasible otherwise.
In addition, bringing mobility support functions to the mobile
edge platform may have a dramatic impact on the existing
architecture.

Mobile edge computing architecture has been analyzed by
Beck et al. [19] and a taxonomy is specified according to
the following criteria: offloading, local connectivity, content
scaling, augmentation, edge content delivery, and aggregation.

Particularly, according to their definition, cloudlets, can also
use offloading to a mobile edge computing server, which in our
case is a definition of a dew computing layer. The difference
in specifying it as a non-cloudlet layer lies in our definition
that a cloudlet server is a representation of an edge computing
layer, and it is on the same level to the mobile edge server.

Wang et al. [20] conclude that mobile edge networks
provide cloud computing and caching capabilities at the edge
of mobile operator networks.

B. Dew Computing

Dew computing has been defined by several research papers
[21], [22], [23] as an architecture that brings computing closer
to the user. Wang et al. [24] discuss the transition of Internet
computing paradigms towards dew computing.

Dew computing concepts are complementary to the edge
computing concept. We define dew computing concept for
streaming IoT devices as end-user devices that do not have
Internet access via LAN network in order to transfer data or
offload computations to an edge or cloud server.

The basic definition of dew computing concept [22] speci-
fies two essential features:

• independence, by enabling an environment where the IoT
device can perform locally and interact with the end-user
without the need of a permanent Internet connection, and

• collaboration, by enabling an environment where the IoT
device can collaborate with other devices via an Internet
connection.

Ray [25] discusses that the independence and collaboration
features in the Wang definition [22] need an addition of the
microservice concept [21] although it is indirectly assumed

2

that a microservice is the key feature to allow independence
feature. The independence concept and new formulation of the
collaboration feature have been analyzed by Ristov et al. [23],
where the information-centric feature is added to the existing
two essential features, although, they can be treated as an
indirect.

A specification of a dew computing architecture was given
by Wang [26] along with an elaboration of functional re-
quirements. It is an extension of a cloud-based client-server
architectural concept adapted to a new environment.

A dew server is defined by Wang [26] as a tiny light-weight
server that provides microservices [21]. Ray [25] enhances it
with a more detailed specification. He discusses three types
of novel-services: infrastructure-as-a-dew, software-as-a-dew
service, and software-as-a-dew product. In addition, he defines
that the dew computing model is composed of six essential
characteristics: Rule-based Data Collection, Synchronization,
Scalability, Re-origination, Transparency, and Any Time Any
How Accessibility.

In this paper we address dew computing application in IoT,
especially targeting the streaming IoT devices. An overview
of dew computing solution for streaming IoT is presented in
[3]. The implementation details address the way the devices
connect to each other in various environments. The communi-
cation can be established directly from the IoT devices to the
cloud server, or to the edge devices via various personal area
network or LAN technologies.

III. ARCHITECTURAL CONCEPTS

We start with a basic client-server architecture, where a
client (a computing device located in a lower architectural
layer) is connected to a server (located in the upper archi-
tectural layer) by a communication link. The edge computing
concept introduces an intermediate server, called edge server
between the cloud server and the client, which in our case is
a streaming IoT device.

According to the provider of the communication infras-
tructure, there are two approaches of the edge computing
architecture, the first based on a cloudlet edge server and the
second on edge servers mobile operator’s network.

A. Cloudlet Edge Computing Architecture

A simple design of adding an edge server between the
end-user IoT device (client) and the cloud server is based
on a cloudlet. A cloudlet is a smaller server on the edge of
Internet network provided by an Internet provider. The cloudlet
server collaborates with the end-user IoT device by a LAN
technology. Its main function is to provide services to the
client, since the end-user streaming IoT device can neither
perform complex computations nor store big amounts of data.
In addition, it may be a mobile device which is wirelessly
connected to the edge server and is battery-operated, so its
function is constrained by the capacity of an installed battery.

The cloudlet edge computing concept is presented in Fig. 1.
The top layer consists of a cloud server, the lower layer of
IoT devices. The intermediate layer specifies the cloudlet edge

IoT
devices

Cloud

WAN

Cloud
Server

Sensor Actuator

Communication

Cloudlet
Server

WiFi

Edge
computing

Internet
network

Fig. 1. Cloudlet edge computing architectural approach

server. The communication between the cloudlet and cloud
server is based on WAN and between the cloudlet and IoT
devices on WiFi LAN networking.

The IoT device offloads data and computations to the nearby
cloudlet. It relieves the energy supply demands since complex
computations and data storage are transferred to the cloudlet.
Since the communication is local via a wireless network, the
expected delays are relatively small and are much lower than
standard WAN delays used in the case of a remote cloud server.

B. Mobile Edge Computing Architecture

The second approach of building an edge computing solu-
tion is based on using an edge server on the mobile operator’s
network. When analyzed from an architectural design view,
this is the same three-layer architecture, where an edge server
is added to the client-server architecture. The difference to the
cloudlet approach is that the communication infrastructure is
provided by the mobile operator. The edge server is located
on the edge of the Internet perimeter of the mobile operator,
while the IoT devices are using the mobile operator’s network.

The presented design differs from the previous since the
edge server is not anymore a cloudlet, it is another server
owned by the mobile operator and located at the base station
on the edge of Internet network. The whole communication
between mobile operator’s cloud server and the edge server at
the base station is via WAN provided by the mobile operator.
The end-user IoT device communicates with the edge server
via radio waves of the mobile operator’s network, such as
3G/4G or 5G.

Fig. 2 presents a mobile edge computing architectural
approach. The IoT device can offload data and computations
to a more powerful edge server. Since it is located at the base
station of the mobile operator’s network, the expected trans-
mission delay is very small and the IoT device performance
is relatively high.

The problems associated with streaming IoT and enabling
their mobility by wireless connection and small size battery-
operated function cannot be solved by classical edge com-

3

IoT
devices

Cloud

WAN

Cloud
Server

Sensor Actuator

Communication

Edge
Server

3G/4G

Edge
computing

Mobile
operator
network

Fig. 2. Mobile edge computing architectural approach

puting solutions. It cannot be solved either using cloudlets
nor direct mobile edge computing architecture. The solution
is provided by adding a new layer between the edge server
and the IoT device. Similar to the previous categorization, two
approaches are possible, the first by using a LAN connected
cloudlet or an edge server on a mobile operator’s network.

C. Dew Computing Cloudlet Architecture

Adding another dew computing layer in the cloudlet archi-
tecture is presented in Fig. 3. A streaming IoT device with
limited power supply and mobility enabled with personal area
networking wireless connectivity can communicate only with
a dew server. A dew server is out of Internet perimeter outside
the edge of a network and therefore it cannot be treated as an
edge device. It communicates to the cloudlet edge server via
LAN. The cloudlet server can also communicate with other
cloudlet or cloud servers to exchange results and any relevant
information.

The IoT device streams data to a nearby dew server via
Bluetooth or other personal area network communication. It
neither performs any computation nor stores any data. It is a
simple realization of a sensor that senses a signal and transfers
data to the nearby dew server. The dew server takes the role of
essential signal processing and data storing. In addition, it is
able to transmit data and complex computations to a cloudlet
server, or exchange information about the outside world.

In the context of dew computing, the dew server performs
its functions independently and can collaborate with other
devices.

D. Dew Mobile Edge Computing Architecture

The dew mobile edge computing architectural design differs
from the cloudlet dew computing architecture in the commu-
nication of the dew server with the edge server. Instead of
a cloudlet on the LAN provided by the Internet provider, the
design uses an edge server on the edge of the mobile operator’s
network. A mobile operator’s radio communication is used
for communication between the edge server and dew server,

IoT
devices

Cloud

WAN

Cloud
Server

Sensor Actuator

Communication

Cloudlet
Server

WiFi

Edge
computing

Internet
network

Bluetooth

Dew
computing

Dew
Server

Fig. 3. Cloudlet dew computing architecture

IoT
devices

Cloud

WAN

Cloud
Server

Sensor Actuator

Communication

Edge
computing

Bluetooth

Dew
computing

Dew
Server

Edge
Server

3G/4G

Mobile
operator
network

Fig. 4. Dew mobile edge computing architecture

instead of LAN used as a communication between the cloudlet
edge server and dew server.

Fig. 4 presents the dew mobile edge computing architecture.
The IoT device is a light mobile device wirelessly connected
with limited battery-operated power supply. It can commu-
nicate with a dew server via Bluetooth or any other personal
area network communication link. The dew server uses 3G/4G
or 5G radio communication link established by the mobile
operator. The edge server found on the edge of the mobile
operator’s Internet network can communicate with the main
cloud server to exchange information.

Some readers may argue that this is another edge computing

4

IoT
devices

Cloud

WAN

Cloud
Server

Sensor Control Logic Actuator

Communication

Internet
network

PAN

Dew
computing

Dew
Server

Fig. 5. A reduced dew computing architecture

implementation. Let’s specify the main differences. The dew
server is out of the Internet network, it uses 3G/4G or 5G
to communicate to the edge server and therefore is out of
the Internet edge, although, indirectly it is connected to the
Internet. In addition, the IoT device uses a personal area
network to connect to the dew server, instead of the mobile
operator’s radio network.

The analyzed issues make a clear distinction between the
two identified edge computing approaches and these two dew
computing approaches. Using another dew computing layer
between the edge server and the IoT device results in enabling
an environment for light mobile streaming IoT devices that
spend only a small portion of energy for a low power personal
area network communication link.

E. Dew Computing Cloud Architecture

To be consistent we will provide another dew computing
architecture which does not belong to the previous edge com-
puting architectures (cloudlet and mobile edge computing). It
is based on direct communication between the dew server and
the cloud, as presented in Fig. 5. A streaming IoT device is a
light mobile IoT device wirelessly connected to the dew server,
which is capable to establish a WAN connection to the cloud
server.

There is a great similarity between the direct dew cloud
architectural approach and the cloudlet edge computing ar-
chitecture. The difference is in the communication between
the IoT device and the dew or edge server. A dew server
is capable to accept personal area network communication,
while the edge device only WiFi LAN network. Personal area
communications are required by the streaming IoT device
to save the energy consumption. Since it is a small mobile
device and it is intended to spend only a small portion of
energy, it cannot support WiFi connection, but only low energy
Bluetooth or similar local radio connection.

It also explains the similarity to the mobile edge computing
architecture, since it is using 3G/4G or 5G mobile operator’s

communication link instead of low energy Bluetooth or similar
local radio connection.

IV. DISCUSSION

Different analyzed architectural approaches are compared to
implement an effective solution for streaming IoT devices that
demand mobility, low power local wireless communication and
battery-operated devices that spend only small energy for its
performance.

A. Edge vs Dew computing approaches

According to Wang [26], a dew server is added on a path
between the client and cloud server. In addition, it can work
independently and collaborate with others.

However, the idea of adding a server between the client and
the cloud server fits more to the edge computing concept. By
definition, edge computing brings the computing to the edge
of the network, so a new edge server is located next to the
client, that is the streaming IoT device in our case.

Comparing these two approaches, dew computing is an
extension of the edge computing concept, not the client-server
concept, as elaborated in the previous Section.

The evolution of edge computing concepts and their imple-
mentation in IoT has been discussed by Gusev and Dustdar
[4]. Two approaches are defined in the case processing is
realized on the edge of the network, provided either on the
mobile operator’s network or on the LAN provided by an
Internet provider. The dew concept is defined by bringing
the processing even closer to the IoT device than the edge
computing concept. The end-user IoT device is not on the
edge of the network but will communicate to an edge device
that will provide a connection to the Internet and all relevant
functionalities.

Zhou et al. [27] define post-cloud computing paradigms
to include fog computing, mobile edge computing, and dew
computing. According to their definition, fog computing is a
horizontal architecture for a virtualized platform that provides
computation, storage, and services between end devices and
cloud servers, which slightly differs to our understanding that
fog computing refers only to a communication infrastructure
environment. Further on they define mobile edge computing
as an architecture offered at the edge of a mobile network.
Although these two items differ in their definition, we can
conclude that they have specified fog computing as a special-
ized virtualized environment and mobile edge computing as
an environment provided on the edge of the mobile operator’s
network. In our definition, both are considered as part of edge
computing, and fog is a synonym to edge, or its special case
when virtualized environments are used.

As a special form of a post-cloud computing paradigm [27],
dew computing is specified as a software organization model
where local computers provide rich functionality independent
of cloud services. So this fits into our definition that they
are not on the edge of the network, and these devices can
communicate to edge devices and access edge or cloud servers
to exchange information or even offload. data and computing.

5

Another interesting feature is the communication access
to end and intermediate devices. Some authors [7] define
fog computing as an infrastructure where all communication
mechanisms are supported, including PAN (Bluetooth), LAN
(WiFi) and mobile operator networks (3G/4G). Although most
of them set an equivalency between the fog computing and
edge computing concepts, the main difference to the mobile
edge computing as they only use mobile networks (3G/4G),
while cloudlet implementations use only LAN (WiFi) con-
nection. We do not agree to this classification and define the
dew computing layer, which communicates to the IoT layer
by PAN (Bluetooth), and to the above layer via LAN (WiFi)
in the cloudlet implementation or via mobile operator network
(3G/4G) in the mobile edge computing concept.

According to the classification presented by Dolui and Datta
[7], the context awareness in fog computing is medium, and
in mobile-edge computing high, while the cloudlet context
awareness is low. We do not agree to this classification and
add that a dew-computing cloudlet solution may also have high
context awareness.

Zhou et al. [27] discuss that edge computing is just another
computing paradigm advocated by the academic community
[28] with a wider description and broader meaning than
fog computing. Actually, edge computing is based on fog
computing and refers to and is included in the definition
and categories of mobile edge computing, as a general term
that covers both fog computing and mobile edge computing.
However, there is no broad consensus on the concept of edge
computing.

B. Dew computing challenges for IoT streaming devices

According to several other definitions of dew computing,
the dew devices does not have permanent LAN connection
and Internet access, but can have occasionally. However, in
our specification of dew computing solution for streaming IoT
devices, these devices can collaborate with edge devices via
personal area network and, therefore, access the wider world
via LAN network and Internet connectivity.

Analyzing the basic definition of dew computing devices
with features to perform independently and collaborate with
other devices, the edge computing concept provides only
the second feature, since it must have an Internet or other
connection to the server where the processing of offloaded
computation is performed and where the massively collected
data is stored. However, in our case, a dew device is a stream-
ing IoT device without direct connection to the server and can
perform regularly without communicating a remote edge or
cloud server. Connecting to an edge device via personal area
network technologies will enable indirect Internet availability.

Note that although a streaming IoT device can process data
locally, still it may not perform all required functions that
need an exchange of information with the wider world. For
example, if the streaming IoT device is not connected to an
edge device, it may lose its data and fail to deliver results to
the outside world.

Difference between the classical implementation of a
mobile-edge computing solution and its dew computing im-
plementation is in the way the IoT devices are used. The
conventional approach means that the smartphone or any
other mobile device is at the same time an end-user device
and IoT device. However, the dew computing implementation
introduces two layers, instead of one, the first is the IoT
devices layer, and the second is the dew computing layer with
smartphones or other mobile devices.

Analyzing the edge and dew computing architecture, we
can conclude that they change the centralized approaches to
distributed decentralized environment. In addition, Nastic et al.
[29] define a serverless real-time data analytics platform where
the (micro) services provided by edge devices, edge servers
or, in our case, dew servers, can be transferred (offloaded) to
another device found in the nearby proximity and ready to
accept its function.

The main challenges in dew computing architectures that
support streaming IoT devices are:

• autonomous functioning, by communication to a local
dew server

• lower latency and high bandwidth communication, and
• minimal energy consumption, by minimizing the number

of operations, data storage and data transfer.

V. CONCLUSION

To bring the processing closer to the end-user streaming
IoT devices we can use the concept of edge computing. The
edge in this context has LAN connectivity, and Internet access
provided either by a mobile operator or by an Internet provider.

We have analyzed a typical case when end-user streaming
IoT devices are constrained by mobility, wireless connectivity,
and limited battery-operated power supply. These features pre-
vent using the edge concept directly, so another architectural
concept needs to be designed to cope with these issues. The
presented solution belongs to the dew computing concept.

Dew devices are the end-user streaming IoT devices that
can perform required activities independently and collaborate
with neighboring edge devices to access a LAN network and
Internet connection. We have presented architectural design
details on these dew concept implementations in both cases
where the edge is provided by a mobile operator or Internet
provider.

The main difference between the edge and dew computing
concepts are in the definition of the location of the end-
user device. If it is on the edge of the Internet network,
then it is treated as an edge computing architecture, while
if it is outside of the Internet perimeter edge, then it is a
dew computing architecture. Both architectural styles aim at
bringing the computing closer to the user, and we can say that
dew computing brings it even closer to the user. This fits in the
definition of going back to the roots that are to the end-user
devices.

In the case the end-user device demands mobility, low
energy local radio wireless connection performing as small
processing tasks as it is possible to save the battery-operated

6

power supply, then the answer is in the use of a dew computing
architecture. The dew server design can be also constrained by
low energy consumption to save the energy and may use LAN
or mobile operator radio communication links, determining if
the solution will use cloudlet or mobile edge networking.

REFERENCES

[1] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker,
A. Bassi, I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer et al.,
“Internet of things strategic research roadmap,” Internet of Things-
Global Technological and Societal Trends, vol. 1, no. 2011, pp. 9–52,
2011.

[2] M. Satyanarayanan, “Pervasive computing: Vision and challenges,”
IEEE Personal communications, vol. 8, no. 4, pp. 10–17, 2001.

[3] M. Gusev, “A dew computing solution for IoT streaming devices,” in
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO), 2017 40th International Convention on. IEEE, 2017,
pp. 387–392.

[4] M. Gusev and S. Dustdar, “Going back to the roots: The evolution of
edge computing, an IoT perspective,” IEEE Internet Computing, vol. 22,
no. 2, pp. 5–15, 2018.

[5] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
communications and mobile computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[6] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A
survey,” Future generation computer systems, vol. 29, no. 1, pp. 84–106,
2013.

[7] K. Dolui and S. K. Datta, “Comparison of edge computing implementa-
tions: Fog computing, cloudlet and mobile edge computing,” in Global
Internet of Things Summit (GIoTS), 2017. IEEE, 2017, pp. 1–6.

[8] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[9] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[10] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on. IEEE, 2014, pp. 1–8.

[11] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[12] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
vol. 8, no. 4, 2009.

[13] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the third ACM
workshop on Mobile cloud computing and services. ACM, 2012, pp.
29–36.

[14] A. Bahtovski and M. Gusev, “Cloudlet challenges,” Proceedia Engineer-
ing, vol. 69, pp. 704–711, 2014.

[15] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[16] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, 2016.

[17] S. J. Kim, G. Deng, S. K. Gupta, and M. Murphy-Hoye, “Enhancing
cargo container security during transportation: A mesh networking
based approach,” in Technologies for Homeland Security, 2008 IEEE
Conference on. IEEE, 2008, pp. 90–95.

[18] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computinga key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[19] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge
computing: A taxonomy,” in Proc. of the Sixth International Conference
on Advances in Future Internet. Citeseer, 2014, pp. 48–55.

[20] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[21] K. Skala, D. Davidovic, E. Afgan, I. Sovic, and Z. Sojat, “Scalable
distributed computing hierarchy: Cloud, fog and dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 2, no. 1, pp. 16–24, 2015.

[22] Y. Wang, “Definition and categorization of dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1–7, 2016.

[23] S. Ristov, K. Cvetkov, and M. Gusev, “Implementation of a horizontal
scalable balancer for dew computing services,” Scalable Computing:
Practice and Experience, vol. 17, no. 2, pp. 79–90, 2016.

[24] Y. Wang, K. Skala, A. Rindos, M. Gusev, S. Yang, and Y. PAN,
“Dew computing and transition of Internet computing paradigms,” ZTE
COMMUNICATIONS, vol. 15, no. 4, 2017.

[25] P. P. Ray, “An introduction to dew computing: Definition, concept and
implications,” IEEE Access, vol. 6, pp. 723–737, 2018.

[26] Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199–210, 2015.

[27] Y. Zhou, D. Zhang, and N. Xiong, “Post-cloud computing paradigms:
a survey and comparison,” Tsinghua Science and Technology, vol. 22,
no. 6, pp. 714–732, 2017.

[28] Open Edge Computing, “Open edge computing initiative,” 2017.
[Online]. Available: http://openedgecomputing.org/index.html

[29] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A serverless
real-time data analytics platform for edge computing,” IEEE Internet
Computing, vol. 21, no. 4, pp. 64–71, 2017.

7

Formal Description of Dew Computing
Marjan Gusev

Ss. Cyril and Methodius University,
Faculty of Information Sciences and Computer Engineering,

Skopje, Macedonia
Email: marjan.gushev@finki.ukim.mk

Yingwei Wang
University of Prince Edward Island,

School of Mathematical and Computational Sciences
Charlottetown, Canada

Email: ywang@upei.ca

Abstract—Dew Computing is a specific cloud-related comput-
ing architecture that brings the computing closer to the user.
Two main features of the dew computing include independence
of external systems and collaboration with other cloud servers,
making it an environment that can work in two modes, localized
mode where all the services are provided within the internal
local network perimeter and global mode, where it functions
just as an intermediate device in the client-server cloud model.
This article presents a formal description of dew computing as
a service model and defines its two main operating modes with
mathematical modeling functions.

Index Terms—Dew computing; Cloud computing; Formal spec-
ifications; Service modeling; Computational modeling; Turing
machines; Servers.

I. INTRODUCTION

Dew computing is an on-premises computer software-
hardware organization paradigm in the cloud computing envi-
ronment where the on-premises computer provides function-
ality that is independent of cloud services and, in the same
time, it is collaborative with cloud services, too.

The goal of dew computing is to fully realize the potentials
of on-premises computers and cloud services. Here, an on-
premises computer is a cloud computing term. It means local
computers, or non-cloud computers, which include personal
computers (desktops, laptops), tablets, smartphones, servers,
and clusters.

Wang [1] explains the essential dew architecture to be an
extension of a classical ”client-server” architecture concept
by introducing an intermediate dew server located close to
the client. Although this looks similar to the cloudlet concept
[2] as an edge computing concept [3], we will discuss the
distinctions among them in Section VI.

Dew computing has two major features: independence and
collaboration [4]. Independence means the on-premises com-
puter is able to provide functionality offline. Collaboration
means the dew computing application has to automatically
exchange information with cloud services during its operation.
Such collaboration includes synchronization, correlation, or
other kinds of inter-operation.

Ray [5] discusses that besides these two features, two more
features characterize dew computing. The first one addresses
the ”microservice provision”, as defined by K. Skala et al.[6],
which incorporate the theory of micro-service components
located far away from ent virtual infrastructures. The second

one specifies the ”scalability” in correlation to ”independence”
and ”collaboration” as analyzed by Ristov et al. [7].

Dew computing is an emerging research area and applica-
tion area. Although the theory and methods of dew computing
are being shaped, many dew computing applications have
already existed for many years, even before the dew computing
concept was proposed.

To clarify the concept of dew computing and to further
facilitate dew computing applications, we need to precisely
determine which applications are dew computing applications.
In other words, we need a model to describe dew computing
applications. In this paper, we try to develop such a formal
specification and computing model.

The rest of the paper is organized as follows. Section II gives
the background and describes the dew computing modeling
considerations. A model specification of a generic server
model is presented in Section III and formal definitions of
a dew service and dew server systems are introduced in
Section IV. Examples of simplified modeling using service
resources are elaborated in Section V. Section VI discusses
the derived model and compares our formal specification
with related approaches. Finally, Section VII is devoted to
conclusions and future work correspondingly.

II. BACKGROUND

This section elaborates a background for developing a for-
mal specification of dew computing, including dew computing
modelling considerations and service model essentials.

A. Dew Computing Modeling Considerations

A dew computing model should satisfy several require-
ments. For example, at least it should cover all forms of
dew computing applications provided as a service system, and
should not be restricted by a special group of applications.

For example, one simple way to model dew computing is
that every dew computing system is considered an internet.
Here the word internet starting with a lowercase i indicates that
this is a group of computers that are connected through TCP/IP
protocols. Considering this approach, each on-premises com-
puter or a group of such computers are organized as an
internet; websites are created on this internet; various services
exist in this independent dew world.

In this model, all the dew applications communicate with the
cloud which is the Internet with uppercase I; the relationship

8

between a dew and the cloud is actually the relationship
between a small internet and the big Internet. Although an
internet and the Internet are different in their sizes, they are
equal in terms of structure: they are both governed by TCP/IP
protocols; the collaboration feature between a dew and the
cloud can be interpreted as the communication among different
internets.

This model is very practical and useful. It covers a broad
range of applications, including dew servers and dewsites of
the Web in Dew (WiD) applications.

This model has its drawbacks. The biggest problem is that It
has limitations; only those applications that conform to TCP/IP
protocols are covered. Theoretically, dew computing can be
implemented using techniques other than those using TCP/IP
protocols.

Analyzing the application domains, Rindos and Wang [8]
identify Web in Dew (WiD) and Infrastructure as Dew (IaD)
categories of dew computing. Later on, new categories are
identified as Storage in Dew (STiD), Database in Dew (DiD),
Software in Dew (SiD), Platform in Dew (PiD), and Data
in Dew (DaD). Also, several research papers include dew
computing in IoT architectures and applications [9].

Based on the above discussions, we need a dew computing
model that covers a broader range of dew computing applica-
tions, that does not directly involve technical implementation
details.

B. Server and service provision model

We consider that a service is provided by a complex system
that interacts with other systems and performs a transformation
of the requests to provide the output. This complex system is
considered as a service provision system, and generally, is
called a server system. Fig. 1 presents a basic model of the
server that provides a generic service.

Fig. 1. Model of a basic server system providing a service to the device using
external systems to compute results

To understand the basic model, Fig. 1 also contains a
description of a device, which can be any computing or another
device that can generate a service request (defined as an input
to the server) and obtain a service response (defined as an
output of the server). In a classic client-server model, the client
is any computing device that sends a service request, and the
server is the computing unit that generates a service response.

In addition, Fig. 1 specifies an external system which in
essence is also another server system that generates a service

response to a given service request. However, in this case, the
analyzed server generates a service request as an input to the
external system and expects a service response generated by
the output of the external service system. The same terms
that are associated with input and output to the external
server system, in this case are treated as output and input
correspondingly to the analyzed server system.

Let’s dig deeper into the architecture of the basic server
system and its service provision. Internally, the analyzed server
system receives a service request defined by an input data I
and calculates an output data O that is transferred as service
response to the requestor device. The processing of the input
uses a set of data transformations. As this is a computing
system, it can generate the output based on the input data if
the system complies to a definition of a combinatorial logic
only.

However, the presented generic model of a server machine is
a more complex system, and besides the input, it computes the
output, also based on its internal state. In this case, the model
of this computing machine uses finite state automata and the
concept of memory that stores internal data. The memory itself
can be treated as another service system that accepts a service
request as an input and outputs a service response by providing
data. Once again the communication to the memory is by
a service. The analyzed server generates a memory service
request to the memory in order to access the internal data and
receives a service response as an output of the memory.

The overall server model also uses external data generated
by the external server systems, as discussed earlier. This sum-
marizes the definition of a generic server system to calculate
an output based on three different inputs:
• data input I generated by a client device (service re-

quest),
• internal data M provided by memory as an internal

service, and
• external data E provided by external services.
As a conclusion, a generic server system depends on other

server systems, such as memory and external service providers.
It transforms the data input I , using internal data M and
external data E provided by corresponding service providers
to generate output data O,

Therefore, a typical modeling will define a relation between
the output O and inputs I,M,E by a specific transformation
function ω. In addition, it will change internal data in the
memory by a specific state transition function δ. Details on
the development of a service model are specified in the next
section.

III. A GENERIC SERVER MODEL

Our definition of a server model will be given in relation
to a specification of a Turing machine.

A. Turing Machine definition

Now, let’s analyze the connection of such a simple system
with a definition of a Turing machine or other models of
computations.

9

A (one-tape) Turing machine, according to Hopcroft and
Ullman [10], can be formally defined as a 7-tuple M =
{Q,Γ, b,Σ, δ, q0, F} where

• Q is a finite, non-empty set of states,
• Γ is a finite, non-empty set of tape alphabet symbols,
• b ∈ Γ is the blank symbol (the only symbol allowed to

occur on the tape infinitely often at any step during the
computation),

• Σ ⊆ Γ \ {b} is the set of input symbols,
• δ : (Q \ F)× Γ→ Q× Γ× {L,R} is a partial function

called the transition function, where L is left shift, R is
right shift. (A relatively uncommon variant allows ”no
shift”, say N, as a third element of the latter set.) If δ
is not defined by the current state and the current tape
symbol, then the machine halts.

• q0 ∈ Q is the initial state,
• F ⊆ Q is the set of final or accepting states. The initial

tape contents will be accepted by M if it eventually halts
in a state from F .

Anything that operates according to these specifications is
a Turing machine. Any service we are analyzing in this paper
is a Turing machine.

B. Specification of a generic server

Now let’s correlate our conceptual model of the device and
server systems to a definition of a Turing machine as a model
of computation or other models of computers. A conventional
Turing machine uses unlimited sequential memory, while real
computers use limited random access memory. In computer
science, random-access machine (RAM) is an abstract machine
model identical to a multiple-register counter machine adding
indirect addressing. Its equivalency to the universal Turing
machine can be observed if the RAM’s program and data
are stored in the registers realizing a so-called von Neumann
architecture.

We will give a mathematical definition of a server system
that will be an approximation of a final state machine defini-
tion, that will reflect the modeled system behavior.

Definition 1: A general mathematical model of a server
system is defined by:

• Θ is a finite non-empty set of data values called the data
alphabet,

• Σ is a finite non-empty set of input symbols called the
input alphabet, such that Σ ⊆ Θ

• Γ is a finite non-empty set of output symbols called the
output alphabet, such that Γ ⊆ Θ

• S is a finite non-empty set of states,
• λ is a finite set of input data values, such that Λ ⊂ Σ,
• µ is a finite set of memory data values, such that µ ⊂ Θ,
• ν is a finite set of data values obtained by the external

server systems, such that ν ⊂ Θ,
• ρ is a finite set of output data values obtained as a

response of the server, such that ρ ⊂ Γ,
• s0 is the initial or start state, such that s0 ∈ S

• δ is a transition function given by (1)

δ : S × Σ×Θ×Θ→ S (1)

• ω is an output function given by (2)

ω : S × Σ×Θ×Θ→ Γ (2)

Θ is the set of all data values that can be treated as
an input, output, and memory data value. In reality, it may
represent any string, number or structured data. Σ and Γ are
sets that represent the possible input and output values used
by the system. The triple (Θ,Σ,Γ) consists of alphabets of all
possible data used by the system, correspondingly as memory
values, accepted input and generated output. In addition, the
set of all possible states is S.

The quadruple (s0, λ, µ, ν) consists of the initial system
state s0, actual input λ, requested memory values µ, requested
external data values ν.

Two functions determine the behavior of the system.
Each server functions as a kind of finite state automaton

and its behavior is determined by the state in which the
automaton is currently in, usually known as an initial state s0.
The transition function actually defines the final (exit) state
s1 of the finite state automaton by providing a function (3)
in a deterministic finite automaton. Instead of generating one
possible exit state the transition function may return a set of
states δ ⊆ S instead of one state s1.

s1 = δ(s0, λ, µ, ν) (3)

The output function (4) is calculating the set of output
values that the server system responds with.

ρ = ω(s0, λ, µ, ν) (4)

It can be conventional that both the transition and output
functions may not be defined on all possible states and data
values defined by the input, memory or obtained by an external
server system.

The behavior of the server system as a finite state automaton
can be modeled as a Mealy machine, since its output depends
on the input and internal state, and if the output depends
only on the current state then it can be modeled as Moore
machine. One may argue that the output function is obsolete
if a proper conversion from a Moore to an output-equivalent
Mealy machine (by labeling every edge with a transition
symbol). However, we prefer to use this definition since it
gives all relevant information for a faster understanding of the
server system behavior.

This model of the server system has the same computational
power as the Turing machine restricted to perform only read
operations and moving in one direction only.

IV. A DEW SERVER FORMAL SPECIFICATION

A. Dew server modeling

A dew server is a specific server system with certain
restrictions on the presented model. The main difference is
that the dew server can work in a closed environment without
the use of external server systems.

10

Therefore, a dew server’s definition is the same as the
previous one, but it needs to be extended with the availability
of the external server systems and reflect Internet connectivity.

Let’s denote by η ∈ B = {0, 1} the availability of Internet
connection and the external server systems, by a simple rule
that 0 means no availability, and 1 the availability.

The transition function will be modeled by (5) and the
output (exit) state will be given by (6).

δ : S × Σ×Θ×Θ× B → S (5)

s1 = δ(s0, λ, µ, ν, η) (6)

Note, that in the case of a nondeterministic finite automaton
the output may be a set of states ∆, instead of one state s1.

Similarly, the output function ω will be modeled by (7) and
the output data set will be given by (8).

ω : S × Σ×Θ×Θ× B → Γ (7)

ρ = ω(s0, λ, µ, ν, η) (8)

If the availability is η = 1 then the dew server model is
exactly the same as the general server model. However, if the
availability is η = 0 then the requested external server system
value will be undefined or get a not available data value N/A.
Therefore, the definition of all possible data values that the
dew server is operating will need to be extended to Θ′ defined
by (9). This also applies to the sets of input and output values,
correspondingly Σ′ and Γ′ as given by (9).

Θ′ = Θ ∪ {N/A}
Σ′ = Σ ∪ {N/A} (9)
Γ′ = Γ ∪ {N/A}

This means that in the case of unavailability of external
server systems (η = 0), the associated value that the system
will continue to use is ν = N/A and correspondingly the
output of the dew server will be N/A. So, the dew server
still performs the specified functions, but in the case of
unavailability, it gets a specific value. However, not all server
requests will need a value from external servers, and in this
case, the dew server will continue to function as it was initially
intended for.

Definition 2: A dew server system is a server system with
the following constraints to the Def. 1.
• Θ′ is a finite non-empty set of data values called the data

alphabet, defined by (9),
• Σ′ is a finite non-empty set of input symbols called the

input alphabet, defined by (9),
• Γ′ is a finite non-empty set of output symbols called the

output alphabet, defined by (9),
• λ is a finite set of input data values, such that Λ ⊂ Σ′,
• µ is a finite set of memory data values, such that µ ⊂ Θ′,
• ν is a finite set of data values obtained by the external

server systems, such that ν ⊂ Θ′,
• ρ is a finite set of output data values obtained as a

response of the server, such that ρ ⊂ Γ′,
• δ is a transition function given by (5)

• ω is an output function given by (7)
Finally, we define dew computing based on dew server

systems:
Definition 3:
If dew server systems are used in a computing process, this

computing process is called dew computing.

V. EXAMPLES OF SIMPLIFIED MODELING OF SERVICE
RESOURCES

In this section, we will present examples of simplified
models of the service resources. A service resource is either
an internal memory or external server.

A memory is an internal resource, realized as a set of
memory locations. A small part of the memory is used in
conventional computers as internal registers, which is a smaller
memory located next to the processing unit. In this sense, a
memory contains a larger number of memory locations. Each
memory location can be accessed by specifying its address
and specifying the memory access instruction.

The external server is also a service resource. It can be
accessed based on the availability function η. If the external
server is available, then the access is defined as a request with
input parameters and external server address.

We will continue with specifying a simplified mathematical
model of a memory and server.

A. A simplified model of a memory system

A memory is a specific server system. The service resources,
in this case, belong to a set of memory locations M. The
unique identifier of a memory location is its address α.

The memory can have different resource sets, such as
internal registers, and bulk memory. Therefore, the service
that a memory is providing needs to make a distinction to
which resource a service request is referred to. In this case,
the resource identifier τ is used as an input parameter in the
service request, besides the address.

In addition, the memory service function should be deter-
mined as ”store” or ”load”, by the function id ϕ.

Definition 4: A memory system is a simplified server system
with the following constraints to Def. 1:
• α is the address of a memory location, such that α ∈
{0, 1, . . . , 2M − 1} in a memory that contains 2M loca-
tions, where M is a positive integer,

• resource id τ ∈ 0, 1, . . . R− 1 in a system that uses R >
0 resources,

• function id ϕ ∈ {0, 1}, where 0 means memory load, and
1 means memory store,

• λ is the input set defined as a set of the address, resource
id, and function id, that is λ = {α, τ, ϕ},

• ρ is the output value getting a value of performing the
output function ρ = ω(α, τ, ϕ),

• s0 is the initial state that represents a ready state that waits
for an input triple to perform an activity according to the
specified function ϕ. When the service is requested, the
state changes to a busy state s1. Once the service response
is computed and an output is sent, the state changes to s0.

11

If a service is requested while the internal state is busy
then the request is held in a queue until the internal state
reaches the ready state s0.

B. A simplified model of a digital service system

The service resources are determined by the state, internal
memory and external server resources. Each state s ∈ S can
be determined by the internal registers. The set of all internal
registers R and the set of all memory locations M determine
the internal resources.

Note that in Def. 1 we have defined the values that can be
exchanged between the systems. Here we define the locations
where these values will be stored and used. Therefore, the set
I = R∪M is a representation of internal resources, as a set
of all internal memory locations. Note that these sets should
not be mixed with data values µ or the data alphabet Θ.

External resources are determined by a finite number of
external servers, with a set of E memory locations.

Both the Internal and external resources define the service
resources.

A service resource may belong to the dew computing con-
cept if it functions both with or without Internet availability.
In addition, it needs to be close to the service requestor to
belong to a class of dew computing servers.

VI. DISCUSSION

A. Dew Computing Features

Two main features of the dew computing concept will be
analyzed in correspondence to our formal specification.

Independence is addressed by the availability function equal
to 0 (η = 0). In our formal specification, the dew server will
continue to deliver its services in the case without Internet
availability.

Collaboration is addressed by the availability function equal
to 1 (η = 1). In our formal specification, the dew server can
exchange information with the cloud servers, which means
synchronization of content or control parameters. Also, in this
case, the dew server will continue to deliver its services.

Collaboration enables at least the following:
• upward synchronization to transfer information to the

cloud server,
• downward synchronization to transfer information to the

dew server, and
• new service specification to define new services of the

dew server.
Upward synchronization means that the exchange of infor-

mation with the cloud server is such that data from the dew
server is sent to the cloud in order to be available for a wider
environment. It will not change the service definition repre-
sented by the transformation functions, including transition
function δ and output function ω.

Note that the independence feature specifies that the col-
laboration is not crucial for delivery of services. It means that
the collaboration means that the cloud server will receive some
information and not have any impact on the performance of
the dew server.

The upward synchronization is extensively used in an appli-
cation of dew computing solutions for IoT, such as wearable
eHealth sensors that deliver data to a smartphone, being a dew
server, that functions with and without Internet availability.
In the case of Internet availability, the smartphone sends all
received data to the cloud server.

Downward synchronization means that the exchange of
information with cloud servers may change the set of internal
memory values µ. Therefore, this will change the internal state
of the dew server and initiate results (service output) different
from those that will be obtained if the internal state was not
changed. For example, this feature is used to define a new
content of the dew server that delivers localized web content.

One more function may be used with the collaboration
function. It may be used to define a new service with specific
transition function δ and output function ω. This makes the
dew server a rich environment to deliver services.

B. Comparison with related approaches

Let’s compare our server system definition with other defi-
nitions and specifications. Zhang et al. [11] specify a service
model as a Feedback Control-based Services System. They
specify the input of a service consumer and the output as a
fulfillment of a service requestor. A specific sensor feeds back
the response back in the system for continuous improvement
and business transformation. The interior components are
service activities/processes, service resources, service infor-
mation, service people and service partners. In addition, they
set the internal goal to increase the profit and decrease the
costs, and external goal to reach service level agreement.

In our model, we have identified the service resources
and service activities/processes. The service resources are the
internal memory and external server resources, and also the
service information kept as a state in our definition. The
transformation is defined by the transition and output functions
that compute the next service information and the output. Our
model refers to data computation and does not address people
and partners. Also, we do not analyze the business aspects by
setting business goals, we describe a digital version of a dew
server.

C. Dew computing vs. Edge computing

The essence of edge computing is to push applications,
data, and services away from central servers (core) to the
edge of a network. It is based on the core-edge topology.
While most devices are connected with core-edge topology
at the current time, some devices are connected with mesh
topologies, such as NYCmesh, Detroit’s Equitable Internet
Initiative, and eastern Afghanistan’s FabFi.

Dew computing is a different approach. It emphasizes its
independent operation without the Internet connection and its
collaboration with cloud services. Dew computing does not
rely on network topology.

Comparing dew computing and edge computing, dew com-
puting is featured by its collaboration with cloud services, and
it is not restricted by core-edge topology. Edge computing

12

also has its advantages. Because currently, core-edge topology
is still dominant in the Internet, edge computing encourages
researchers and professionals to move applications to the edge
of the network, which goes toward the same direction as dew
computing.

A cloudlet is a small-scale cloud datacenter located at the
edge of the Internet. It is the middle tier of a 3-tier hierarchy:
mobile device - cloudlet - cloud. Cloudlet is close to a mobile
device but not on the mobile device. On the other hand, dew
servers, if introduced, should be on the mobile devices.

Therefore, the formal description of edge computing could
be developed in a similar manner as the development of
dew computing formal description, but including the network
topology.

VII. CONCLUSION

In this paper, we have introduced a formal specification of
the dew computing concept.

Dew computing is based on delivering of (micro) services
by a dew server, functioning independent of a wider Internet-
based environment, although it can collaborate with other
cloud servers in the case of Internet availability.

Our definition of a server that delivers a service is based
on a mathematical specification of a Turing machine, adapted
to the availability of internal and external resources. In this
sense, internal resources are defined as memory that specifies
an internal state of the dew server, while the external resources
are defined by other services that depend on the availability
of the Internet.

Using our introduced formal specification, we have pre-
sented examples of simplified systems, including internal
memory, and external servers that deliver external services to
enable external data to our analyzed service. This completes
the formal specification, as it uses a recursive definition of a
memory and external servers by its initial definition.

In addition, we have compared edge computing and dew
computing with regards to our definition, and indicated the

essential difference between dew computing and edge com-
puting.

For future research, the first task would be to fine-tune
the definition of a dew server system. We have noticed that
one feature of dew server system has not been grasped by
Definition 2. This feature is restricted client access to the dew
server. Because such feature involves the overall description
of the client-server systems, we postpone such discussion to
a later time. Future research may also involve the analysis of
performance issues that could provide a better insight into our
formal specification.

REFERENCES

[1] Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199–210, 2015.

[2] A. Bahtovski and M. Gusev, “Cloudlet challenges,” Proceedia Engineer-
ing, vol. 69, pp. 704–711, 2014.

[3] M. Gusev and S. Dustdar, “Going back to the roots: The evolution of
edge computing, an IoT perspective,” IEEE Internet Computing, vol. 22,
no. 2, pp. 5–15, 2018.

[4] Y. Wang, “Definition and categorization of dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1–7, 2016.

[5] P. P. Ray, “An introduction to dew computing: Definition, concept and
implications,” IEEE Access, vol. 6, pp. 723–737, 2018.

[6] K. Skala, D. Davidovic, E. Afgan, I. Sovic, and Z. Sojat, “Scalable
distributed computing hierarchy: Cloud, fog and dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 2, no. 1, pp. 16–24, 2015.

[7] S. Ristov, K. Cvetkov, and M. Gusev, “Implementation of a horizontal
scalable balancer for dew computing services,” Scalable Computing:
Practice and Experience, vol. 17, no. 2, pp. 79–90, 2016.

[8] A. Rindos and Y. Wang, “Dew computing: The complementary piece
of cloud computing,” in Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom)(BDCloud-SocialCom-SustainCom),
2016 IEEE International Conferences on. IEEE, 2016, pp. 15–20.

[9] M. Gusev, “A dew computing solution for IoT streaming devices,” in
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO), 2017 40th International Convention on. IEEE, 2017,
pp. 387–392.

[10] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading Mass, 1979.

[11] L.-J. Zhang, J. Zhang, and H. Cai, Services computing. Springer Science
& Business Media, 2008.

13

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

14

Enhancing Usability of Cloud Storage Clients with

Dew Computing

Tushar S Mane.

TASM2M,

Total Automation Solutions,

Pune, India.

tushar.mane@tasind.com

Himanshu Agrawal.

Department of Computer Science,

Symbiosis Institure of Technology,

Pune, India.

himanshu.agrawal@sitpue.edu.in

Gurmeet Singh Gill.

Brand Manager,

Delicious Tiffin Pvt. Ltd.,

Pune, India.

gurmeet@delicioustiffin.com

Abstract— Cloud storage services like Dropbox, Google

Drive, Microsoft One Drive have been active and improving

unceasingly since 2007. Introduction of desktop/ mobile clients,

for example, ‘Dropbox Desktop’ are the cherry on top, as the

users could lever their cloud space from their desktops or

mobiles, giving them elegant feel with the file system and

storage present on their device. Whatever happens on the

device reflects back on cloud space with the corresponding

linked account, and vice versa. We can ‘partially’ say that the

computation has been brought down to the ground by such

clients. Though this has extremely augmented the user

experience, there are still some parts which need to be put in

place to complete the picture. This paper highlights some of the

missing pieces (offline version management, offline file sharing.

and access control list, file URL generation etc.) and their

resolutions, which can further improve the usability of the

cloud storage clients taking, them towards the completeness.

As this is a seamless demonstration of computation happening

at device level when there is an intermittent internet

connectivity, and then handshaking back with the cloud as it

gets connected back to the internet, i.e. Dew Computing, we

are referring it as Dewbox. This is one of the many, yet

enclosed features of on-device computing, and hence we

attempt to encourage researchers to expose possible

mechanisms which would utilize the device’s potentials to its

best. As per the knowledge of authors, this is the first ever

attempt till date which traces the missing features of cloud

storage clients.

Keywords—Cloud Computing, Fog Computing, Dew

Computing, Cloud Storage, Version Management, Dropbox,

Google Drive, One Drive.

I. INTRODUCTION

Storage was the fundamental aspect of Cloud Computing
[1] that made it so widespread and beneficial, as it came up
with the notions such as Horizontal and Vertical Scaling [2].
Compute services followed the storage services and so do the
other services. Latency, security, and privacy are still the
foremost concerns of Cloud Computing [3]. To address these
issues, Fog Computing [4], which is proximal to devices is
presented. Developments in embedded computing [5] have
now made devices remarkably powerful. Quantum
computing is already knocking the doors [6]. Dew
Computing [7] focuses on utilizing device capabilities,
especially when those are offline. Dew Computing can be
defined as on-device computing, which is not only
independent of Cloud Computing but also collaborative with
it. Independent means device should work in the absence of
internet connectivity, while collaborative meaning whatever
happened in absence of internet connectivity is synced
appropriately and in order with the cloud as soon as the
device gets connected back to the internet. While
investigating Storage in Dew (STiD) category [8], we found
one of the important missing functionalities, offline version

management. Almost 15 GB space is allocated for an
unlimited period in free tier. So, students, freelancers, small-
scaled or medium scaled organization’s developers prefer it
as a workspace for their source codes. The purpose is to have
cloud as well as a local copy of workspace, so that
developers can code online, offline, and at the same time
they don’t have to worry about version control, which is
default feature of cloud storage services. Version
management [9] allows one to work freely, without worrying
about possible mistakes. One can just switch back to the
previous or next version as and when it is necessary. It also
offers huge relief on maintenance/ reuse side, one can just
restore an applicable version, modify it and get objectives
completed. Apart from developers, there are other users (who
don’t care about versions/ maybe sometimes they do) of
storage clients too, who are interested in storing documents,
sharing those with any person of choice, on the move. These
users can also get benefited by having Dew Computing as an
add-on in their storage clients. The sole purpose of the paper
is to demonstrate, how missing functionalities of any
software client or tool, which are collaborated with the cloud,
can be discovered to take them towards completeness, and
then unleash the power of devices to achieve the necessary
computing i.e. Dew Computing. This is just one of the
million possible compute examples to showcase the
influence of Dew Computing, and attempt to promote the
immense scope in Dew Computing Research.

 The paper is structured as follows, second section
illuminates Dew Computing to its state of art in a
comprehensive manner. The third section enlightens the
issues in the current cloud storage clients with the example
of Dropbox, while the fourth section proposes the extension
to ‘Storage in Dew (STiD)’ category of Dew Computing to
resolve the issues in the current model of cloud storage
clients. In the same section, we essentially propose the
architecture of Dewbox. Please note implementation
guidelines of only the missing features are given. We
conclude the paper in the fifth section along with future
directions.

II. DEW COMPUTING: STATE OF ART

Current Dew Computing Research revolves around four
principal visions by various researchers involved in Dew
Computing. However, all forks joining at one common
feature, on-device computing which is collaborative with
upper layers of computing. Associate Professor, Dr. Yingwei
Wang, School of Mathematical and Computational Sciences,
University of Prince Edward Island, Canada, states it as a
computing residing on the ‘on premise’ computer, which is
independent of cloud in offline mode, while collaborative
with the cloud in case of online mode [8]. Whatever
happened during offline mode would be synchronized and
correlated back with the cloud in the subsequent online

15

mode. The following diagram (fig. 1) depicts the proposed
Cloud-Dew Architecture, wherein any device in the local
network will be served by corresponding Dew Server.
Devices can still avail minimal set of services or frequently
used functions from the Dew Server for unbroken
computing.

Fig. 1. Cloud- Dew Architecture.

The key objective is to facilitate with the services to users
even if there is no internet connection. The use case has been
classily demonstrated with the category Web in Dew (WiD)
[10], wherein user can still access the website in absence of
network connectivity. Key set of minimal functions are still
served by ‘on premise’ server with the help of application,
web, and database server running on it. Example, you can
browse your Facebook posts and pictures in your spare time
even if you don’t have an active internet connection. Further,
Dr. Yingwei Wang has categorized this generic architecture
into several type of services, so that parallel research work
can be started for rapid growth of Dew Computing. In this
paper we explore Storage in Dew (STiD).

 Second research involvement on Dew Computing is
directed by Dr. Karolj Skala, Professor at Rudjer Boskovic
Institute, Zagreb, Croatia. He proposes Dew Computing to
be Context as a Service (CaaS) to offload Cloud Computing
[11]. Context as a Service (CaaS) involves processing data at
ground, and provide a meaningful context to the cloud. This
will surely be a helping hand to the cloud servers. This
would scale computing power drastically (fig. 2) and will
open doors to solutions to the various computing problems
which were considered to be hard to solve till now.

Fig. 2. Scalable Computing Hierarchy [11].

Going forward, the professor has coined the terms
Distributed Information Service Environment (DISE), Global
Information Processing Environment (GIPE) and Low Power
Low Information Processing (LPLIP) as agents of massively
distributed and connected physical things.

 Dr. Sasko Ristov, Institute of Computer Science,
University of Innsbruckalso, has similar vision of utilizing
maximum resources at the roots, for information processing,
before computation is handed over to the cloud. Researcher
proposed ‘computation scalability mechanism and its load
balancing’ in his research work [12].

 Recently, Mr. Partha Ray extended Dr. Yingwei Wang’s
Cloud-Dew Architecture and introduced some terms to
support the extended model [13]. He aims to have
lightweight ‘Dew Server’ on client itself, which should serve
one client at a time, and store most frequently used functions.
In case of data loss, the ‘Dew Server’ should be able to
recover from cloud server from the last checkpoint. Local
copy of data should be as small as possible which is referred
as ‘Dew Site’. The refinement consists of how ‘Dew Site’
can be modified by ‘Dew Client’. ‘Dew Script’ is a web
script file, which will be used for modification of ‘Dew Site’.
These modifications will be supervised by a ‘light weight
web come application controller’ called ‘Dew Analyzer’,
which will be responsible for maintaining the ‘Dew Site’
state in respective database(s) present in Database
Management System on the ‘Dew Server’. The operational
details are made clear by 1:1 and 1: N mappings between
‘Dew Server’ and ‘Dew Site’ as shown in fig. 3.

Fig. 3. Mappings Between Dew Server(s) and Dew Site(s) [13].

Last but not the least, in our (me and Dr. Himanshu
Agrawal) recent paper [14], which clubs Cloud-Fog-Dew
Computing paradigms in to one Service Computing
Ecosystem, we shown how Dew Computing can
considerably reduce the computational latency. One of the
key properties of Fog Computing is its heavy geographical
distribution to support the scalability [15]. This geo-
graphical distribution comes with the maintenance overload

16

and hence the possible computing outage. So we put forward
a ‘Dew Node Architecture’, which enables ‘Dew Node’ to be
a Service Provider or Consumer. Fig. 4 shows architecture of
‘Dew Node’.

Fig. 4. Dew Node Architecture [14].

So, in case Fog Computing layer fails to provide service to
the end devices, one end node, which now becomes ‘Dew
Node’ will provides service to other end node i.e. ‘Dew
Node’ with contextual intelligence embedded in them.

III. CLOUD STORAGE CLINETS: THE MISSING ELEMENTS

As stated before, this paper emphasis on Storage in Dew
(STiD) class of Dew Computing. Existing functions of cloud
storage clients are well versed, well established, and stable.
But, there are some major missing features, which we trace
in this section. Please note very carefully, that we have
chosen Dropbox for demonstration purpose, as Dropbox is
implemented entirely using open source technologies.
However, same issue can be reproduced on Google’s backup
and Sync (Previously Google Drive Desktop) and
Microsoft’s One Drive and any other cloud storage client.

A. Version Management

We illustrate the conflict between local and cloud

versions lucidly with the help of small experiment done on

Dropbox. Please note the folder structure, text editor and

symbols. File is stored in Dropbox folder, the special space

created on user’s device after installing Dropbox client. We

have used ‘nano’ editor, but any text editor would do. Green

tick indicates local copy is in sync with cloud, while cycle

symbol indicates, it not synced yet (or syncing under

progress).

User creates file ‘DewBox.c’ on his device (in Dropbox

folder, as shown in fig.5) and it is synced with its cloud

space as there is active internet connection. (Version 1, On-

device)

Fig. 5. File is Created (Online, On-device, Version 1).

Instantly, cloning happens on Dropbox cloud with your
linked account (Version 1- Cloud), fig. 6.

Fig. 6. File Create Operation Clonned (Cloud, Version 1).

Program description, Author info, and Date is added in
program while online, file is saved and closed (Meta Data
Added- Version 2, On-device), fig. 7.

Fig. 7. Meta Data is Added in File (Online, On-device ,Vesrion 2).

With internet connection available, changes are reflected on
respective cloud space (Version 2- Cloud)- Fig. 8

Fig. 8. Meta Data Reflected (Cloud, Version 2).

Now, internet connection is disconnected deliberately and
local file is added with some statements and saved, fig. 9.
(Version 3, On-device)

Fig. 9. Statements are Added in File (Offline, On Device, Version 3).

17

Again, without internet connection, statements in the file are
modified and changes are saved, fig. 10. (Version 4, On-
device)

Fig. 10. Some more Modifications in file (Offline, On-device, Version 4).

Now, file is modified again and internet is enabled. (Version
5, On-device)- fig. 11.

Fig. 11. Some Chnages are made and then Connected to Internet (Vesrion 5).

Immediately, file is synced with cloud and digital twin is
created as shown in fig. 12 (Version 5).

Fig. 12. File gets Synced (Cloud, Version 3).

Here’s the serious problem. What about Version-3 and
Version-4? If student/ developer/ freelancer relies on
‘anytime & anywhere’ feature of cloud, and does some work
at home (or on another device). Next day he goes to office
(or changes the device), and now wants to restore the
program back to Version-3 or Version-4, how can it be
done? Versions which were created, when he was
unknowingly not connected to the internet are lost, right?
Now, this is a very small and simple example (just for
demonstration). In real world there are dependencies among
files/ modules, critical functionalities, a lot of automatic
documentation, and many more factors are involved. This is
severe missing part of a system. Now let’s have a look at
possible add-ons.

B. Enhanced File Operations (File sharing, File Link

Generation, Access Control List etc.)

Roaming people (sales and marketing, business

development, site support, to name a few) or even other

people/ students, who frequently need to share the

documents, keep adding (or removing) people to (or from)

shared list (Access Control List) or share a public file URL,

might not always have an active internet connectivity, may

be due to absence of network, low bandwidth or end of

mobile data quota. In such situations most of the people

generally tend to forget completing this to-do list. Fig. 13.

shows current online operations users can do via client.

Fig. 13.Current Options in Cloud Storage Clients (e.g. Dropbox)

So, an add-on which enables these pending tasks to be

queued in offline mode, so that they can just do these kinds

of activities on the move, without having to maintain this to-

do list in their mind or a diary, would remarkably increase

the usability of cloud storage clients.

Next section explains, Dewbox architecture/ implementation

guidelines and how it can overcome above issues.

IV. DEWBOX: TOWARDS COMPLETENESS OF CLOUD STORAGE

CLIENTS

As mentioned before, all current features of cloud storage
clients are well established, well versed, and stable. So
architecture and implementation guidelines of Dewbox only
focuses on offline version management, file sharing, URL
generation and access control list.

Fig. 14. Proposed Architecture for traced Missing Functionalities/ Add-ons

Architecture, fig. 14, mainly consists of two components,
‘Dewbox Controller’ and ‘External Co-workers’. ‘Dewbox
controller’ contains a component called ‘VMS (Version
Management System) Interface’, which pulls out all the
version history of any file from the external version

18

management system (e.g. Git or Subversion) [16] [17] and
shares it with cloud storage server, with the help of ‘Cloud
Interface’, fig. 15, whenever you get connected to the
internet. So a fine grained version history of any file or set of
files can be maintained. Open source version management
systems like Git or Subversion would be installed along with
Dewbox, and VMS interface will trigger repository
initialization, querying the repository and deletion of the
repository automatically in the background, based upon file
operations done by user.

Fig. 15. Handshaking between Cloud Interface Module and Cloud Server.

 Add-ons like ‘Offline File Sharing, Link Generation and
Access Control List’ are taken care by the second component
of ‘Dew Controller’, the ‘Job Scheduler’. ‘Job Scheduler’ is
Simple Queue Data Structure Implementation for which data
elements are filled from the file-based Database
Management System like SQLite [18]. Whatever operations
are scheduled in offline mode by user, are put in a table
called ‘job_queue’. This table would be queried by ‘Job
Scheduler’ to populate the job queue.

 There would be three other tables in database, one for
storing contact list of the linked account, other for list of files
and their access control, and lastly for storing file URLs and
access control. Whenever user says, I want file ‘A’ to be
shared with person ‘XYZ’ with ‘Read-Only’ permission, a
job will be created by selecting contact ‘XYZ’ from
‘contact_list’ table, file ‘A’ from ‘files’ table, inserting them
in a ‘job_queue’ table with operation as ‘share’ and
permission as ‘Read Only’. ‘Job scheduler’ reads this table,
put the jobs in queue and whenever device gets connected to
the internet, it hands over this queue to the cloud server via
‘Cloud Interface’. ‘Cloud interface’ packs these jobs in such
a manner that those would be understandable by ‘Cloud
Server(s)’.

V. CONCLUSION AND FUTURE DIRECTIONS

 Cloud Storage has become prevalent with Cloud

Storage Clients, which allows users to do file operations on

their devices, irrespective of file system, even in absence of

network connectivity. Operations done in offline mode are

later get synced with the linked cloud storage. This

phenomenon perfectly fit in with definition of Dew

Computing, which states, computing which is independent

and collaborative with cloud. Hence, Cloud Storage Clients

such as Dropbox Desktop, Google Drive Desktop (Now

Back up and Sync), Microsoft’s One Drive, are categorized

under Storage in Dew (STiD) class of Dew Computing. But

the critical function of version management, which could

lead to some serious issues, was still absent. Also, usability

of such clients can also be increased by the offline

extensions like File Sharing, URL Generation and Access

Control List. In this paper, we attempt to trace these missing

features and add-ons. We also suggest an architecture and

implementation guidelines for the same. We name it as

Dewbox, which would take Cloud Storage Clients towards

completeness.

 The only purpose behind the paper is to demonstrate how

various software or hardware clients or tools, which are

connected to the cloud, can be made more independent and

collaborative by utilizing resources present on them for

increasing their usability. Dew Computing is surveyed in a

broad manner to appeal researchers to come forward and

contribute in this growing area, which will drastically

offload cloud servers and provide seamless computing even

in unexpected interruptions in Fog Computing layer.

 We highly anticipate implementation of this paper as a

foremost future work. We have not focused on security

portion of Dewbox, which could mean, opening the Dewbox

folder with credentials or securing file-based database

system which we have recommended or more. We highly

encourage to explore hardware clients like Arduino and

other embedded boards for Dew Computing Research as

Internet of Things, Quantum Computing are already here

and we want Dew Computing to be essential bit of those.

REFERENCES

[1] Yuhang Yang and Maode Ma, “A Survey of Cloud Computing,”
Proceedings of the 2nd International Conference on Green
Communications and Networks 2012 (GCN 2012), Volume 3.
pp 79-84. 2013.

[2] Chien-Yu Liu, Meng-Ru Shie , Yi-Fang Lee, Yu-Chun Lin and Kuan-
Chou Lai, “Vertical/Horizontal Resource Scaling Mechanism for
Federated Clouds,” International Conference on Information Science
& Applications (ICISA), 2014.

[3] Danilo Ardagna, “Cloud and Multi-cloud Computing: Current
Challenges and Future Applications,” IEEE/ACM 7th International
Workshop on Principles of Engineering Service-Oriented and Cloud
Systems, 2015.

[4] Mohammad Aazam and Eui-Nam Huh, “Fog computing: The Cloud-
IoT/IoE middleware paradigm,” IEEE Potentials. May/June, 2016.

[5] Jing Huang, Renfa Li, Jiyao An, Derrick Ntalasha, Fan Yang and
Keqin Li, “Energy-Efficient Resource Utilization for Heterogeneous
Embedded Computing Systems,” IEEE Transactions on Computers,
2017, Volume: 66, Issue: 9.

[6] Charles Day, “Quantum Computing Is Exciting and Important--
Really!,” Computing in Science & Engineering, 2007, Volume: 9,
Issue: 2.

[7] Andy Rindos, Yingwei Wang, “Dew Computing: The
Complementary Piece of Cloud Computing,” IEEE International
Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable
Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), 2016.

[8] Yingwei Wang, “Definition and Categorization of Dew
Computing,” Open Journal of Cloud Computing (OJCC),
Volume 3. Issue 1, 2016.

[9] B. Westfechtel, B.P. Munch and R. Conradi, “A layered architecture
for uniform version management,” IEEE Transactions on Software
Engineering, 2001, Volume: 27, Issue: 12.

[10] Yingwei Wang and David Leblanc, “Integrating SaaS and SaaP with
Dew Computing,” 2016 IEEE International Conferences on Big Data
and Cloud Computing (BDCloud), Social Computing and Networking
(SocialCom), Sustainable Computing and Communications
(SustainCom) (BDCloud-SocialCom-SustainCom), 2016.

[11] Karolj Skala and Davor Davidovic, “Scalable Distributed
Computing Hierarchy: Cloud. Fog and Dew Computing,” Open
Journal of Cloud Computing (OJCC) Volume 2, Issue 1, 2015.

[12] Sasko Ristov, Kiril Cvetkov, and Marjan Gusev, “Implementation of
a Horizontal Scalable Balancer for Dew Computing Services,”
Scalable Computing: Practice and Experience, 2016, Volume 17,
Number 2, pp. 79-90.

19

[13] Partha Pratim Ray , “An Introduction to Dew Computing: Definition,
Concept and Implications," IEEE Access, 2018, Volume: 6.

[14] Tushar S Mane and Himanshu Agrawal, “Cloud-fog-dew architecture
for refined driving assistance: The complete service computing
ecosystem”, IEEE 17th International Conference on Ubiquitous
Wireless Broadband (ICUWB), 2017.

[15] Amir Vahid Dastjerdi and Rajkumar Buyya, “Fog Computing:
Helping the Internet of Things Realize Its Potential,” IEEE Computer,
2016, Volume: 49, Issue: 8.

[16] https://git-scm.com/

[17] https://subversion.apache.org/

[18] https://www.sqlite.org/index.html

Overview of Cloudlet, Fog Computing, Edge
Computing, and Dew Computing

Yi Pan∗, Parimala Thulasiraman†, Yingwei Wang‡
∗Geogia State University, USA

yipan@gsu.edu
†University of Manitoba, Canada

thulasir@cs.umanitoba.ca
‡University of Prince Edward Island, Canada

ywang@upei.ca

Abstract—Cloudlet, Fog Computing, Edge Computing, and
Dew Computing are post-cloud computing models. Researchers
and public need to grasp the essential meaning of each one and
their differences. In this talk summary, we will describe the
origins, definitions, basic principles, and applications of these
computing models.

Index Terms—Dew computing; Fog computing; Edge comput-
ing; Cloudlet; Cloud computing; Network topology; Internet of
Things; Mobile applications; Blockchain.

I. INTRODUCTION

Cloudlet, Fog Computing, Edge Computing, and Dew
Computing are computing models proposed to provide some
features that Cloud Computing cannot provide. They share
one common feature: they all perform computing tasks at
devices that are closer to users. We may call them post-cloud
computing models. Researchers and public need to know their
characteristics, to know their similarities and differences. We
would like to provide an overview to these computing models.

These post-cloud computing models cover huge amount of
research work. We do not intent to provide a full survey to
the whole landscape of these computing models in this talk.
We only concentrate on the following aspects of each model:

1) the origin: when did it start and how it was started;
2) the definition: what does it mean;
3) the principles and applications: how does it work and

how was it used.
We would like to explain our positions regarding to the

origins and definitions of these models.
For origins, in our understanding, every computing model

goes through the following steps for its origination:
1) Before the concept was proposed, some concrete techni-

cal approaches that are very similar to the new concept
or exactly the same with the new concept were proposed
as research ideas and/or applied in products or services;

2) The new concept was proposed after technical accumu-
lation;

3) After the concept was proposed, technical approaches
based on the new concept were widely and quickly
spread; existing approaches were interpreted with the
new concept; new approaches were proposed according
to the new concept.

No computing model can be proposed without technical
accumulation described in Step 1. A long-term accumulation
process is necessary for the establishment of a computing
model.

The origination of a new concept is a significant event
because the new concept leads researchers to explore solutions
to wide range of problems using a paradigm or a framework
that comes with the new concept. Thus, we would like to
introduce the origin of each computing model.

For definitions, each computing model may have more
than one definition. Different researchers may have different
opinions toward these definitions. For each computing model,
we try to find a definition that, we believe, accurately describe
this model.

As a general statement, this talk summary was prepared
for tutorial and discussion purposes. It reflects our limited
knowledge and subjective opinions; we do not guarantee its
accuracy and completeness, although most of our descriptions
have supporting references.

II. CLOUDLET

A. Origin

Although the word cloudlet existed long time ago with
different meanings, it was started being used in the meaning
of a computing arrangement in 2009 [1][2].

B. Definition

The following is a definition of a cloudlet [2]:
A cloudlet is a trusted, resource-rich computer or cluster

of computers that is well-connected to the Internet and is
available for use by nearby mobile devices.

C. Principles and Applications

The Cloudlet model promotes to put small-scale cloud data
centers at the edge of the Internet. A cloudlet is the middle
tier of a 3-tier hierarchy: mobile device - cloudlet - cloud.
A cloudlet is close to a mobile device but not on the mobile
device.

20

III. FOG COMPUTING

A. Origin
Fog Computing was proposed by Cisco. It was first proposed

by Flavio Bonomi, Vice President of Cisco Systems, in a
keynote presentation at a conference in Sept. 2011 [3][4].

B. Defintion
The following is a definition of Fog Computing [5]:
Fog Computing is a scenario where a huge number of het-

erogeneous (wireless and sometimes autonomous) ubiquitous
and decentralised devices communicate and potentially coop-
erate among them and with the network to perform storage
and processing tasks without the intervention of third-parties.
These tasks can be for supporting basic network functions
or new services and applications that run in a sandboxed
environment. Users leasing part of their devices to host these
services get incentives for doing so.

C. Principles and Applications
Fog Computing extends Cloud Computing and services to

devices such as routers, routing switches, multiplexers, and
so on. It mainly involves automation devices because Fog
Computing was proposed with Internet of Things (IoT) as its
background.

IV. EDGE COMPUTING

A. Origin
The term edge cluster was used in a paper in August

2015 [6]. Edge Computing was proposed for the first time
in October 2015 [7]. Some work has been done before this
time. As discussed in Section I, we consider those work as
the accumulation work before its birth.

A paper used the term “computing on the edge” in 2004 [8],
but it is an “early flavor of edge computing” and the new vision
of Edge Computing was “far beyond this initial approach” [7].
The fact that the accumulation work did not use this term also
indicates that this paper was not the origin of Edge Computing.

Many research papers about Edge Computing appeared
after 2015. It is reasonable to say that Edge Computing was
originated in 2015.

B. Definition
The following is a definition of Edge Computing [9]:
Edge Computing refers to the enabling technologies allow-

ing computation to be performed at the edge of the network,
on downstream data on behalf of cloud services and upstream
data on behalf of IoT services. Here we define edge as any
computing and network resources along the path between data
sources and cloud data centers.

C. Principles and Applications
Edge Computing pushes applications, data, and services

away from central servers (core) to the edge of a network;
it is based on the core-edge topology [9][10].

Cloud offloading, video analytics, smart home / smart city
are some examples where Edge Computing can be actively
applied to [11][12].

V. DEW COMPUTING

A. Origin

Dew Computing was proposed in 2015 [13][14][15]. The
first paper became online in January 2015.

B. Definition

The definition of Dew Computing can be found in [16]:
Dew Computing is an on-premises computer software-

hardware organization paradigm in the Cloud Computing
environment where the on-premises computer provides func-
tionality that is independent of cloud services and is also
collaborative with cloud services. The goal of Dew Computing
is to fully realize the potentials of on-premises computers and
cloud services.

C. Principles and Applications

Dew Computing is a new computing model appeared af-
ter the wide acceptance of Cloud Computing. While Cloud
Computing uses centralized servers to provide various ser-
vices, Dew Computing uses on-premises computers to provide
decentralized, cloud-friendly, and collaborative micro services
to end-users.

Dew Computing is complementary to Cloud Computing.
The key features of Dew Computing are that on-premises
computers provide functionality independent of cloud services
and they also collaborate with cloud services.

VI. COMPARISON AND DISCUSSION

A. Similarities

All these computing models share a common feature: they
all perform computing tasks at devices that are closer to users.
It is hard to determine the exact differences among these
models by checking their definitions. The reasons are:

1) Normally a computing model was proposed to solve
a specific problem with a narrow definition. With the
progress of research, researchers tend to expand the
definition to cover a wider range of area. Thus the
definitions of these computing models become quite
similar. Such definition expansion reflects researchers’
eagerness and excitement in exploring new technologies.

2) Even if differences among these models are found in
definitions, some researchers may have different opin-
ions to these definitions.

To understand the underlying reasons of these similar com-
puting model definitions, we had better take a bird’s view
position to observe the general trend in the history of computer
science. Dr. Mahadev Satyanarayanan [10] summarized the
past history in the following quote:

“Since the 1960s, computing has alternated between cen-
tralization and decentralization. The centralized approaches of
batch processing and timesharing prevailed in the 1960s and
1970s. The 1980s and 1990s saw decentralization through the
rise of personal computing. By the mid-2000s, the centralized
approach of cloud computing began its ascent to the preemi-
nent position that it holds today. Edge Computing represents
the latest phase of this ongoing dialectic.”

21

After the widely acceptance and huge success of Cloud
Computing, some researchers discovered the limitations of
Cloud Computing and proposed remedial solutions from dif-
ferent perspectives. Not only Edge Computing, other models
such as Cloudlet, Fog Computing, and Dew Computing were
also proposed as the result of this trend.

B. Differences
Although these computing models reflect the same trend in

response to Cloud Computing’s limitations, these models were
quite different because:

1) they originated from different background;
2) they were proposed to solve different problems;
3) they are related to different disciplines or industries;
4) they deal with different types of devices and environ-

ment;
5) they have different methodologies. Here we would like

to point out some differences among these models.
Cloudlet features micro data centers; it is related to mobile

services. Micro data centers could be set up by mobile service
providers, application providers, or even users.

Fog Computing is tightly related to Internet of Things.
Fog Computing emphasizes proximity to end-users and client
objectives, dense geographical distribution and local resource
pooling, latency reduction and backbone bandwidth savings.

Edge Computing’s rational is that computing should happen
at the proximity of data sources [9]. Edge Computing is also
tightly related to IoT.

Dew Computing is more closely related to software design;
its strong point is to inspire novice applications. Dew Com-
puting was proposed to solve the data availability problem
when an Internet connection is not available. Dew Comput-
ing’s features, categories, and architecture are helpful for new
applications be developed. Dew Computing normally does not
involve edge devices such as routers and switches.

Sometimes, the difference is quite clear. For example, if
Cloudlet model is introduced in mobile applications, a 3-
tier hierarchy: mobile device - cloudlet - cloud would be
established. A cloudlet is close to a mobile device but not
on the mobile device. If Dew Computing is introduced, the
dew component would be on the mobile devices.

Different models may work together. For example: A hierar-
chy was proposed [15] for Cloud Computing, Fog Computing,
and Dew Computing to work together.

Different models may obtain similar results. For example,
an Edge Computing idea about cloud/edge applications [17]
has similar ideas with the cloud-dew architecture proposed in
Dew Computing [13].

Each model may have its special strength. For example, the
Dewblock system [18], that small-data-size blockchain clients
with full node features, can hardly be classified into Cloudlet,
Fog Computing, or Edge Comptuing applications; it is only
possible under the computing model of Dew Computing.

C. Choice Suggestions
If someone is interested in these post-cloud computing

models, which one should he/she choose? What should be

considered in making a choice? Here we give some sugges-
tions.

If you are interested in improving mobile services, from
services providers’ viewpoint or from application developer’s
viewpoint, Cloudlet model is the suitable model for you to
work on.

If you are related to IoT research or IoT industry, Fog
Computing is the area you should pay attention to. With the
development of IoT, huge amount of sensors will be deployed
everywhere. The best place for computing powers to process
data from these sensors should not be far away cloud servers
or low-capacity sensors. Devices such as routers and switches
are a better choice.

If you are interested in infrastructure design, such as smart
home / smart city, or are interested in cloud offloading for
improved efficiency, Edge Computing could be a suitable
choice.

If you are interested in the design of novice distributed ap-
plications, Dew Computing could bring you with inspirations
and architectural assistance. Dew Computing normally does
not involve edge devices, such as routers and switches; Dew
Computing is not restricted by network topology.

VII. CONCLUSION

Cloudlet, Fog Computing, Edge Computing, and Dew Com-
puting spire in the post-cloud world. They were proposed to
solve different problems. They involve different devices. They
have different methodologies. They have only one belief in
common: Cloud Computing should not be the only form of
computing. The essential differences among them are not in
their definitions that claim their coverages because definitions
can be easily updated, expanded, and interpreted in different
ways. The essential values of these computing models exist in
their built-in principles, architectures, styles, and philosophy.
Similar to programming languages, although each program-
ming language has full computing power of a Turing Machine,
each language has its own style, strength, and characteristics.
These computing models will provide different frameworks,
paradigms, guidelines, and architectures to researchers and
developers in the post-cloud era.

REFERENCES

[1] S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, and L. Qi,
“CLOUDLET: towards mapreduce implementation on virtual machines,”
in Proceedings of the 18th ACM International Symposium on
High Performance Distributed Computing, HPDC 2009, Garching,
Germany, June 11-13, 2009, 2009, pp. 65–66. [Online]. Available:
http://doi.acm.org/10.1145/1551609.1551624

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[3] Flavio Bonomi. (2011, Sept.) Connected vehicles, the internet of
things, and fog computing. [Online]. Available: https://www.sigmobile.
org/mobicom/2011/vanet2011/program.html

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

22

[5] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog:
Towards a comprehensive definition of fog computing,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, Oct. 2014. [Online].
Available: http://doi.acm.org/10.1145/2677046.2677052

[6] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 421–434, Aug. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2829988.2787505

[7] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2831347.2831354

[8] M. Rabinovich, Z. Xiao, and A. Aggarwal, “Computing on the edge: A
platform for replicating internet applications,” in Web Content Caching
and Distribution, F. Douglis and B. D. Davison, Eds. Dordrecht:
Springer Netherlands, 2004, pp. 57–77.

[9] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[10] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan 2017.

[11] Ganesh Ananthanarayanan and Victor Bahl and Alec Wolman. (2008,
Oct.) Edge computing. [Online]. Available: https://www.microsoft.com/
en-us/research/project/edge-computing/

[12] G. Ananthanarayanan, P. Bahl, P. Bodk, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[13] Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199–210, 2015.

[14] Y. Wang and Y. Pan, “Cloud-dew architecture : realizing the potential of
distributed database systems in unreliable networks,” in Proceedings of
the 21st International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA15), Jul. 2015, pp. 85–89.

[15] K. Skala, D. Davidovic, E. Afgan, I. Sovic, and Z. Sojat, “Scalable
distributed computing hierarchy: Cloud, fog and dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 2, no. 1, pp. 16–24, 2015.

[16] Yingwei Wang, “Definition and categorization of dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1–7, 2016.

[17] Julia White. (2018, Sept.) Microsoft azure en-
ables a new wave of edge computing. heres
how. [Online]. Available: https://azure.microsoft.com/en-us/blog/
microsoft-azure-enables-a-new-wave-of-edge-computing-here-s-how/

[18] Y. Wang, “Dewblock: A blockchain system based on dew computing,”
in Proceedings of The 3rd International Workshop on Dew Computing,
Oct. 2018, pp. 0–0.

23

CANADA

UNITED STATES
 OF AMERICA

AUSTRALIA

CHINA

INDIA

ADAM
AND NICOBAR

ISLANDS (INDIA)
PHILIPPINES

GUAM

THE BAHAMAS

HAITI

COLOMBIA

ARGENTINA

FALKLAND
ISLANDS (UK)

SVALBARD
(NORWAY)

GERMANY

ROMANIA

UKRAINE

CAPE
VERDE

BIOKO (EQUATORIAL
GUINEA)

CABINDA
(ANGOLA)

SAO
TOME

COMOROS

MAURITUS

FRENCH SOUTHERN AND ANTARTIC LANDS (FRANCE)

HEARD ISLAND
(AUSTRALIA)

REUNION
(FRANCE)

MAYOTTE
(FRANCE)

SOLOMON
ISLANDS

VANUATU

NEW CALEDONIA
(FRANCE)

THE GAMBIA

GUINEA-BISSAU

LIBERIA

QATAR

PAKISTAN

TAIWAN

ISRAEL

TOGO

BENIN

EL SALVADOR

SAINT KITTS AND NEVIS

MONSERRAT
GUADELOUPE
DOMINICA

MARTINIQUE

SAINT VICENT BARBADOS

TRINIDAD AND TOBAGO

GEORGIA

MACEDONIA

CROATIA

AUSTRIA

UNITED ARAB
EMIRATES

1

Number of members of DewCom IEEE Computer Society
Dew Computing Special Technical Community by country

27

5

1

1

4

1

1

1

1

1

2 1

112

1

1

4
2

NEPAL

UK

EWD
IEEE STC

Com

EWD
IEEE STC

Com

IEEE Computer Society Dew Computing Special Technical Community (IEEE DewCom STC) is a new
worldwide Open Community and forum for researchers, professionals, and students in the area of Dew
Computing.
Dew Computing is an emerging research/application area that is the complementary piece of cloud
computing. The goal of Dew Computing is to fully realize the potentials of on-premises computers and
cloud services. The vision of the Dew Computing Special Technical Community is that its efforts shall
facilitate dew-computing research and dew computing application, for the benefit of all users and
providers of the future global cloud-dew computing environment.

IEEE DewCom STC

So far, 49 members from 19 countries have joined together.
Join yourself if you want to contribute to the development of this new paradigm

https://stc.computer.org/dewcomputing/

 25

The Rainbow Global Service Ecosystem

Karolj Skala
Ruđer Bošković Institute

Zagreb, Croatia
skala@irb.hr

Zorislav Šojat
Ruđer Bošković Institute

Zagreb, Croatia

Abstract—A Rainbow is a complex service ecosystem of
interdependent components of Cloud–Fog–Dew Computing
paradigm layers that all work together to enable a seamless
system of global services.
This paper widely and freely (technological and the
Philosophical) considers visions and perceptions in order to
liberate conceptual scintillation or imagination. The main aim
is not to give strict solutions, but to point towards the extreme
broadness of present day Computer Science and
computer/digital electronics usage, to point towards some
possible future development avenues, and to give a simple
analogy as a broad conceptual systematical overview, but
including some concrete architectural guidelines.
The paper presents the IEEE Dew Computing Special
Technical Community (IEEE DewCom STC) as a virtual
scientific-research and development environment for Dew
Computing platform and application development as well as a
collaboration model consideration.

Keywords—Cloud computing, Fog Computing, Dew
Computing, Rainbow Service, serveware

I. INTRODUCTION
There are generally two main questions, or better to say
problems, to be answered and solved in Computer Science.
The one often tackled is “How do we do it?”. In this area
our civilization is in early stage, as much effort is put into
imagining gadgets of all sorts and then solving the “Hows”.
However, a much more rarely asked question indicates a big
generic problem, spreading from philosophy to psychology
and from societal behavior to the very physical – the soil we
live on and the air we breathe. This over important and often
under regarded question is actually “What do we want to
achieve as a civilization?” “What is our final goal?” “What
kind of human living environment do we wish?” “What are
our civilization aims?”
It is the direct responsibility of us Computer Scientists and
of the Computer Science itself to involve itself in the
philosophy and ethics of what we do. It is also our direct
responsibility to find proper means of education of future
generations towards the vast possibilities of proper, ethically
and philosophically correct computer usage for the benefit
of not only humankind, but also of our own planet and its
environment. We may not forget that “empathy”, “ethics”,

“love”, “heart”, “soul” are notions without which we
Humans would not be able to live properly in a civilized
society, together with “imagination” and “intuition”, and
that all those properties are not existing in the computer
hardware/software we develop. Will we ever be able to
properly “programme” love or empathy or ethics or intuition
into future computers? But without those prerequisites we
have to be extremly careful of how much power over our
own lives and our living environment we give to pure
“technical” solutions.
Consequently in addition to a lot of “hows”, we also have to
solve a lot of “whys”! Or, actually, presently it is the
moment to put much more intellectual effort in the “whys”.
So, actually there are two major aspects of future
development of Computer Science: The Technological and
the Philosophical. In this article we will take a slightly
unconventional approach, using Cybernetic principles, to
shed some light on the overall area which in present day
must be covered by Computer Science. We will talk about
Ecosystems, EMV spectrum and Rainbows using these
analogies to state the necessity of integrating various fields
of human endeveaours regarding the present day spread of,
primarily, digital electronics. Though the basic components
are in the very field of Electronics, digital technology, and
therefore actually Computer Science, covers a huge area
from interconnecting those electronic components into
active units, up to enabling free telephone and videophone
conversations through free wireless connection points.
 In nature, an ecosystem is composed of living and
nonliving entities that are connected and work together.
Natural ecosystems are stable, as there is a homeostatic loop
system between all their components (as said, living and
nonliving). The second and even more important component
of ecosystem stability is the self-organization, and between
it and its wider environment. However, the area of usage of
digital electronics and internetworking of all kinds of things
grows stochastically, without regard to global inter-
compatibility, and even less with regard to possible
unknown unwanted consequences on our lives and our
environment.
As already said, it is the role and responsibility of Computer
Science to propose, test and apply a consistent cybernetic
system which would enable stable development of the future
Global Services Ecosystem, representing the Smart Service

 26

System, which would integrate Human Knowledge and
Intelligence and Computer Stubbornness and Exactitude, for
the benefit of the human civilization and all individuals, by
enabling but not forcing, giving more liberty and freedom
and not less, to be a fascinating and powerful tool in our
hands, but not by forcing itself onto us as a master.
Let us call this ecosystem The Rainbow Computing
Ecosystem.

II. DISTRIBUTED SYSTEM EVOLUTION

Modern day computing paradigms foster for a huge
community of involved participants from almost the whole
spectrum of human endeavour. For computing and data
processing there are; individual computers, their clusters,
scientific Grids, and, finally, the Clouds/Fogs/Dews.. For
pure data communication there is the Internet, and for the
Human-understandable Information Communication is the
World Wide Web. The stunning development of actually
extremely powerful hand-held mobile devices connected to
the Internet enabled the "lowering" of certain parts of
Clouds into the so called 'thin clients', and led to the
development of the Fog Computing paradigm as well as to
the ideas of Internet of Things (IoT) and the wish towards
the Internet of Everything (IoE) what we propose to
cowering by new Dew Computing paradigm. The tendency
toward Dew computing is force by dynamic development of
mobile computing, the decreasing availability and cost of
computers and the huge number of networked components,
devices and sensors in the networked environment. Dew
computing is a distributed service technology as a ground
part of architecture in cloud/fog/dew service which client
data/info is processed at the periphery of the network, of
source/process close as possible.

	
Fig	1	Distributed	operation	network	evolution	

	
Dew computing is a new computing paradigm appeared to
fulfill applications at the edge of network in widely
acceptance of cloud computing vertical hierarchy. Dew
computing concerns the distribution of workloads between
Cloud/Fog servers and local computers, and its focus is the
application software organization of local computers. The
goal of Dew computing is to fully realize the potentials of
local computers in Cloud -Fog-Dew symbiosis [1].
Fig 2 presenting a complex service ecosystem of
compatible federated components of Cloud – Fog – Dew

Computing layers that all work together to enable a
seamless system of global Smart Service System (SSS),
proposed name Rainbow.
The Rainbow global service ecosystem will offer new
applications and respond to changing business needs and
support new business models, it will offer new possibilities
of service processes development and information usage for
a very broad user base, it will enable proper maintenance of
essential natural and human-generated ecosystems, and
enable huge savings and optimization in many areas of
living and effort. Well integrated traffic systems, well cared
for plants, efficient usage of energy, higher health level of
general population, disease prevention, catastrophe
warning/prevention, faster essential services,... all can be
achieved by proper architectural means inside a Rainbow
Service Ecosystem[2,3].
However the most significant amount of information
processing all around us is done on the lowest possible
computing level, outright connected to the physical
environment and mostly directly controlling our human
immediate surroundings. These "invisible", "embedded"
information processing devices we find in everything from
our car's motor, over air-conditioners, wending machines up
to traffic-controls and wood-burning stoves, and
ubiquitously all over the industry. These devices, which are
neither at the Cloud/Fog edge, nor even at the mobile edge,
but rather at the physical edge of computing are the basis of
the Dew-Computing Paradigm.

The merits of including those "dew" devices into the Cloud -
Fog - Dew hierarchy are huge, for individuals, the public
and industrial sectors, the scientific community and the
commercial sector, by bettering the physical and
communicational, as well as the intellectual, immediate
human environment.

III. WHY RAINBOW?

As the Sun by seemingly white light shines on Earth and
gives it life, so the idea of Rainbow global distributed
service is to incorporate all fields and segments of Computer
Science into a unified entity, which will bring advancement
and betterment of the quality of life of all people and our
Planet.
As different frequencies of the Sunlight give different
colours (spectrum), so different segments of Computer
Science have important roles for the whole to function
harmoniously. So let us borrow the analogy of Rainbow and
its Colours for specific fields of Computer Science.
It is important to note here, that, in accordance with what
was said before, in Rainbow Computing we necessarily
include both the “technical” and the “philosophical” aspect,
or, in other words, both the Machines and the Humans.
In the following two sections we will describe the overall
Ecosystem from two major aspects: an integrated living
social (human and machine) system, which we will visualize
using the analogy of a Rainbow, i.e. sunlight Spectrum, and
an architectural, more technically oriented, viewpoint.

 27

The Colours of Rainbow

Red – Basic Hardware.

The general machine architecture layer, including hardware
and associated machine code programming principles, partly
also firmware and operating systems.

Present day computing hardware is mostly based on
principles and architectures developed in the early days of
computing, when many obstacles were to be overcome to
get a viable computing machine. Nowadays it is essential to
rethink much of the present day hardware platforms, as
many possible avenues of computer architecture have not
yet been experimented with, and the present day
independent multicore serial processors approach,
specifically due to a complete lack of proper human-
oriented multi-processor/multi-computer programming
principles and languages, is in many cases very inefficient.

Orange – The Creativity Pool.

Collection of creative ideas, with specific attention on novel
approaches to teaching and education.

Many a problem, first regarded as separate and nonsolvable,
suddenly got solved through some solution in a completely
different area. Only if people have developed Creativity it is
possible to have such insights, and Creativity is the main
driving force of our civilization. But for proper and safe
future the Creativity shall be primarily oriented towards
high level integrated visions and properly established “why”
and “do we really want/need/wish it”, and only
consequently the “hows”. Education has also to be oriented
towards the development of Creativity.

Yellow – The Appropriateness Filter.

Weighting of the level of concrete contribution of some
advancement.

An idea, coming from the Orange layer must pass through
the Appropriateness Filter, to test if its usage really
contributes to concrete betterment of a specific field, or not,
or could it in a wider context even be counterproductive or
dangerous. Some ideas can be fanciful, exciting, beautiful,
but it is not necessarily that they contribute in a positive
sense to the civilisation changes, they may even be
counterproductive in societal or environmental sense, and
leading to worse general human living conditions.
Generally, it seems that this area of Computer Science is
well underdeveloped, and rarely the philosophical and
primarily ethical wider consequences of introduction and
interconnection of different new ideas and technologies are
seriously considered, as they should be, at least
scientifically, and consequently by recommendations and
standards, in the most serious cases even by laws.

Green – Environment and Health.

Computer Science in the area of care for the general
environment, environment control and maintenance and
improvement of population health and general wellbeing.

This area involves health oriented devices and small
gadgets, environmental sensors (and effectors), for example
sensors in waterways reacting on specific unwanted
chemicals, rain-composure sensors (e.g. rain acidity), light,
humidity, temperature etc. sensors for closed environmental
control, etc.
On the architectural plan, this area would be primarily
covered by Dew Computing, due to the fact that most of
these devices directly sense and influence the physical state
of human and environmental well-being.

Blue – Communication.

This is the area of all kinds of communication and
communication networks, including, naturally, the
communication between computers and humans and vice
versa.
Although generally it is that Computer Science is closely
related to Cybernetics and Information Science, modern day
development is aimed primarily towards Data. Data is,
naturally, not Information, as it lacks the context/meanining,
or, if you prefer, the Meta-Data. Present day communication
both between humans and computers and between
computers themselves lacks generic compatibility on the
level of what is exchanged, as well as what is to be done.

Indigo – Cooperation and Ethics.

This area covers high level services based on compex
communication interactions, the collection of huge
quantities of Information (not Data, as is presently in
vogue!) and the usage of that Information storage and
processing.
An important aspect of future Computer Science
development in this area will be the “pruning” of
redundancy, and definition of long term safe redundancy
levels of information important to our civilisation.

Violet – Interference, Optics, Quanta.

Protection and Expansion.

Our civilization is every day more and more, in some areas
even already completely, dependent on computers and
networks. We live in a world where even shorter disruptions
of energy or information distribution systems can lead
towards huge problems, from industry and traffic down to
simple life at home. However, much of our electronic
equipment is very suspect able to failure due to electric or
electromagnetic discharges.
This failure suspectability, and its prevention is an
extremely important area of future research and
development due to our overall dependence on electrical
systems, computer systems, wireless and satelite
communications.

 28

IV. THE ARCHITECTURE OF RAINBOW SERVICE

Architecturally speaking, Computer Science has already
developed necessary defined notions and is intensively
exploring necessary principles and solutions for a generic
layered approach which can be developed into a firm
fundament of the Rainbow Computing Ecosystem, as
explained metaphorically through the above cited Colours of
a Rainbow Spectrum.
In the area of Basic Hardware, those are presently primarily
Clusters, Grids and GPU. However, a huge lack of a simple
and consistent approach towards programming parallel
distributed systems has a consequence of necessitating huge
human efforts for attaining wished results. A generic
ontology, as proposed for the Rainbow Ecosystem, with an
appropriate high level human oriented language based on
this ontology, with well defined grammar and semantics,
and with a human approachable large dictionary (amount of
recognized defined words) would allow proper integration
of a myriad of generically heterogeneous devices, human
users and the natural environment.
As basic architectural components presently we have the
Cloud, Fog and Dew Computing layers. A Rainbow is a
complex service ecosystem of interdependent components
of Cloud – Fog – Dew Computing layers that all work
together to announce the possibility of global services. As
already mentioned, in nature an ecosystem is composed of
living and nonliving entities that are interactively
interconnected and work together to perform as a stable
homeostatic and selforganising cybernetic system. The
Rainbow service Ecosystem consists of hardware and
software platforms/infrastructures/serveware 1 , as well as
service customers, engineers, consultants, integrators,
providers and users, together with the human and natural
environment. To achieve the homeostatic balance and
selforganisation between those extremely differing
components, consisting of three major groups – human
made machines, natural humans and the planet Earth's
nature (and with space exploration and satellite
overcrowding even part of the outer space), each of them
with their hugely different own specificities inside each
group, it is essential to define a consistent system of future
development towards the computing/services infrastructure
being a simple and consistent, non-obtrusive and benevolent
helper for human-oriented technical civilisation
development.
Now time Cloud-Fog-Dew Computing defines important
principles, but is usually thought of in terms of three broad
service areas -- infrastructure-as-a-service (IaaS), platform-
as-a-service (PaaS) and software-as-a-service (SaaS).
However, these are not integrated as a unified “Smart
Services System”, and even less as a “Global Services
Ecosystem”. Naturally, the huge effort put into the
development of these basic components promises a solid
base for the high level integration provided by the Rainbow
Service Ecosystem.

1 To enable the proper integration of all components

“serveware”, a service operational middleware, will have
to be developed.

Figure 2 . Global Distributed Service Hierarchy

All three architectural machine levels – the Cloud, the Fog
and the Dew have to grow into a compatible and inter-
understandable Information System, integrated through
ergonomics and linguistics with the other two essential
components of our civilisation: the human world, society,
production, consumption, politics, economy, and the natural
world, wellbeing of all other inhabitants of our Planet, and
non-interference into freedom of living and expression, both
human and non-human (i.e. animals, plants, the Planet etc.).
Even today the Cloud services are really more complex
then their generic descriptions, and the description of Cloud
Computing also needs to include the vast array of service
providers, service federations, harmonizations and
orchestrations, i.e. the human component.
The Fog system, based primarily on an almost uncountable
amount of individual programmable devices, has to provide
seamless integration of both Dew Computing layer devices,
Cloud Computing and individual Humans. Hierarchically,
most of the ergonomics, language usage, information
filtering and distribution shall be done in this layer, as it is
the prime Rainbow Ecosystem layer connected directly to
the Humans, in constant communication with them.
The Dew Computing components are, rather than
communicating with Humans, actually the most sensitive
area of Computing, as they are directly communicating, by
sensing and effecting, with the physical and natural
environment, often being able to directly change certain
living conditions. The enormous vastness of very different
sensing and effecting conditions and principles will
necessarily generate an overwhelming amount of individual
data. If we do not introduce a consistent ontology of meta-
data and a linguistical framework of coordination

 29

programming, filtering and sending/receiving, that is, if we
do not start to use Information communication, providing
each set of Data with appropriate Context, it will be
impossible to properly integrate the Dew, Fog and Cloud
Computing layers in a machine basis of the Rainbow
Service Ecosystem.
Generally the full Ecosystem architecturally consists of five
basic layers: Nature-Dew-Human-Fog-Cloud.
To enable the proper integration of all components by
“serveware”, a service operational middleware, will have to
be developed. This serveware would be the prime
information access, filtering and distribution component,
and would include the full Rainbow Global Services
Ecosystem ontology, as well as necessary linguistic
elements (language) for human-computer and computer-
computer communication (which shall be compatible, i.e.
understandable by both humans and computers), and by
which Information can be retrieved, processed and used.
This may be achieved by selforganising autonomous
service, which would organise the upward and downward
information and request flow from Nature to Dew to Human
to Fog to Cloud and vice versa.
In the previous section of this article a much more thorough
description of scientific and human efforts, and the
principles of proper integration of the human and natural
world was done on a basis of analogies with Colours of a
Rainbow. It is essential to mention that, similar to the
Cloud-Fog-Dew layerisation of the machine aspect of a
Global Services Ecosystem, or, as we call it poetically the
Rainbow Ecosystem, it is necessary to do proper
layerisation and define efficient interaction and
intercommunication principles for the human components of
the emerging Global Ecosystem.
Generally speaking we could enlist several layers of human-
computer interaction levels: Users (simple or power),
Scientists (innovators, researchers, students...),
Infrastructuralists (networking, clustering...),
Applicationists, Producers (in any production area),
Companies (which necessary follow Economic trends),
Societies (usage in Politics, everyday life, well-being etc.).
These layers, though it may not be obvious from the first,
are an essential field area of Computer Science, as the
development of the future computing infrastructure has to be
driven by and has to be controlled by these (broadly stated)
“layers” of human society.
Therefore it is necessary to have an architectural system,
which includes individual layer architectures (models) for
all machine and human Computer Science fields, and
includes an overall architecture, defining a viable
selforganising cybernetic eco-system of the future human
civilization.

V. IEEE DEWCOM STC COLLABORATION MODEL

	
	
IEEE Computer Society Dew Computing Special Technical
Community (DewCom STC) under coordination of Y. Wang
and K. Skala represent an open community and forum for
researchers, professionals, and students in the area of Dew
Computing and related distributed computing/service topics.
	

	
	

Figure	3	STC	Collaboration	model	
	
	The development of the Dew Computing paradigm as well
as the vision of establishing a global smart service system
(SSS) will be considering, developing, implementing
through the IEEE DewCom Special Technical Community.
For now STC has 43 members from 14 countries, presenting
in fig.4. These virtual scientific research community
establishing a collaborative platform for the realization of
the Dew Computing paradigm and possibly Rainbow vision.
	

	
	

Fig	4		Membership	distribution	map	
	
The Dew Computing development in organized manner
intends, through Research, Innovation and Development, to
explore the realm of possibilities of Dew-Computing, solve
the basic problems of integration of the "dew" level with the
higher level Dew-Fog-Cloud hierarchy, with special
attention to	 the necessity of information (and not data)
processing and communication, and demonstrate the

 30

viability and high effectiveness of the developed
Architecture in several areas of human endeavor through
real life implementations. Finally, the IEEE STC
collaborative action will define and, in cooperation with
standardization/dictionary bodies, try to standardize the
basics necessary for the seamless integration of the emerged
Information Processing Architecture into the Dew, Fog and
Cloud Paradigms, as a way towards the abovementioned
civilization goals. Our intention is to work together as an
virtual Research and development group to create, organize,
share, and collaborate on projects and articles and develop
our effective IEEE DewCom STC collaboration model.

VI. CONCLUSION

A robust Rainbow Ecosystem will offer new life-business
applications and respond to changing civilization processes,
business models, it will offer new possibilities of knowledge
development and information usage for a very broad user
base, it will enable proper maintenance of essential natural
and human-generated ecosystems, and enable huge savings
in many areas of effort. Well integrated traffic systems, well
cared for plants, efficient usage of energy, higher health
level of general population, disease prevention, catastrophe
warning/prevention, faster essential services, ease of
knowledge learning and information collecting, higher level

of creativity education... all can be achieved by proper
architectural means inside a Rainbow Service Ecosystem.

ACKNOWLEDGMENT
This research has been supported by the Ministry of Science
and Education of the Republic of Croatia under the grant
533-19-15-0007 (Centre of Research Excellence for Data
Science and Cooperative Systems) and IEEE Computer
Society Dew Computing Special Technical Community
(IEEE DewCom STC).

REFERENCES
[1] Skala, K., Davidović, D., Afgan, E., Sović, I., Šojat, Z.: Scalable
distributed computing hierarchy: cloud, fog and dew computing. Open
Journal of Cloud Computing (OJCC), 2 (1). pp. 16-24. ISSN 2199-1987,
2016
[2] Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199–210, 2015.
[3] Pooja Kukreja, Deepti Sharma: A Detail Review on Cloud, Fog and
Dew Computing, International Journal of Science, Engineering and
Technology Research (IJSETR), Volume 5, Issue 5, 1412, 2016
[4] . Afgan, P. Bangalore, K. Skala: Application Information Services for
Distributed Computing Environments, Journal of Future Generation
Compute Systems, Volume 27, Issue, 2, p. 173-181, 2011.

Vehicular Data Analytics Dew Computing

Parimala Thulasiraman1, Ruppa K. Thulasiram1, Ying Ying Liu2

Abstract— Recent development of Intelligent Transportation
System (ITS) offer several technologies. In centralized ITS
solutions, such as Google map, crowd sourcing app Waze,
Toyotas Entune dynamic routing, on board smart phone devices
or vehicles send periodic local traffic data to a central server
or cloud, and receive periodic traffic statistics on their routes
of interest. The decentralized ITS solutions use Vehicular Ad
Hoc Networks (VANET) to collect traffic information through
vehicle-to-infrastructure (V2I) communication and vehicle-to-
vehicle (V2V) communication. Cloud is a bottleneck in areas
where Internet access may be limited. In this paper, we propose
to develop a traffic aware routing algorithm on dew computers.

I. INTRODUCTION

Real-word applications are complex networks, which can
be represented abstractly as graphs. System entities in these
scientific problems are the graph nodes and inter-relationship
between these entities are the graph edges. The focus of this
research is on one complex network, transportation networks.

Finding the optimal travel path from a source to desti-
nation on a given road map is called the vehicle routing
problem. The road map is usually represented as a graph.The
entities in transportation networks are landmarks, junctions
or intersections and the links are the roads or lanes between
these entities. In classical algorithms such as Dijkstras algo-
rithm [1] and A* algorithm [2], the vehicle routing problem
is solved by finding the shortest path on the road map with
the weight on an edge representing the actual geometric
distance between two junctions. These classical routing al-
gorithms are static and do not consider the dynamic traffic
information such as congestion, accidents and road closure.
As vehicle traffic congestion becomes alarming severe in
modern metropolitan areas, traffic-aware vehicle routing is
one of the most important problems in improving quality of
life and building smart cities with higher productivity, less
air pollution and less fuel consumption. Recent development
in Intelligent Transportation System (ITS)[3] offer several
technologies.

In centralized ITS solutions, such as Google map, crowd
sourcing app Waze, Toyotas Entune dynamic routing, on
board smart phone devices or vehicles send periodic local
traffic data to a central server or Cloud, and receive periodic
traffic statistics on their routes of interest. The centralized
ITS solutions are simple to implement and generally have
good optimality due to the availability of global traffic in-
formation and powerful central computing power. However,

1 Parimala Thulasiraman and Ruppa K. Thulasiram are
with with Faculty of Science, Computer Science, University of
Manitoba, Winnipeg, Canada, thulasir@cs.umanitoba.ca,
tulsi@cs.umanitoba.ca 2 Ying Ying Liu is a PhD student in the
Department of Computer Science, umliu369@myumanitoba.ca

such solutions require constant cellular connectivity of the
smart phones or vehicles, and have a single point of failure
on the centralized computing platform.

The decentralized ITS solutions use Vehicular Ad hoc
Networks (VANET) to collect traffic information through
vehicle-to-infrastructure (V2I) communication and vehicle-
to-vehicle (V2V) communication. VANETs use IEEE
802.11p standard, an amendment to the IEEE 802.11 (Wi-
Fi) standard, for dedicated short range communication
(DSRC). In V2I communication, vehicles exchange informa-
tion about specific road segment with nearby Road Side Units
(RSU) via continuous wireless communication such as Wi-Fi
hotspots or long/wide range wireless technologies. In V2V
communication, vehicles are connected to nearby vehicles
using short range wireless technologies. Compared to the
centralized ITS solutions, VANETs are highly distributive
and have lower cost for cellular bandwidth usage. Compared
to cellular communication systems that only exist in some
newer vehicles, embedded V2I/V2V communication systems
are more prevalent in existing and new vehicles. Effective
V2V communication is also much more economical than V2I
communication, which requires the installation of RSUs and
therefore investment in city infrastructure.

There are advantages and disadvantages of both V2I and
V2V communication. The technology for V2I communica-
tion is well developed compared to V2V communication.
However, V2V communication is a decentralized approach
that can collect information in real time during a vehicle’s
movement on the road. The lack of technology to implement
a decentralized environment is the main bottleneck in V2V
communication. The proposed solution is to develop a traffic
aware routing algorithm using dew computers.

II. RELATED WORK

There are two main challenges for dynamic real-time
traffic-aware vehicle routing using V2V communication: 1)
how to collect real-time traffic data, and 2) how to dynam-
ically route a vehicle based on real-time traffic data as the
vehicle travels on the road.

Collection of real-time traffic data requires efficient rout-
ing of data packet from vehicles to vehicles. In V2V com-
munication, the connectivity between two vehicles is called
a link. Due to the highly dynamic nature of vehicle mobility,
and complex road condition and building blockage, VANETs
are characterized by highly dynamic topologies with frequent
link breakages, network fragmentation, and a high number
of packet collisions and interferences. Therefore, studies of
VANET protocols [4], [5], [6] have mainly focused on evalu-
ating Quality of Service in delivery of arbitrary data packets

31

from a source vehicle to a destination vehicle. However, the
collection of traffic data requires generally involves multiple
sources (the vehicles on the route of interest sending traffic
data) and one destination (the vehicle requesting traffic data),
which adds to number of hops and latency. Giuseppe, et al.[7]
propose four V2V protocols for traffic congestion discovery
along routes of interest through beacon messages.

After the collection of real-time traffic data, the next
challenge is how to incorporate it into dynamic vehicle
routing. In addition to improvements in traditional algorithms
[8], [9], stochastic algorithms mimicking the routing of
social animals in the dynamic nature have attracted much
attention due to their proven efficiency and similarity to the
dynamic vehicle routing problem. One popular algorithm
is Ant Colony Optimization (ACO) [10], an iterative and
evolving optimization heuristic. In nature, ants explore routes
from nest to food source and deposit a chemical substance
called pheromone, which attracts other ants to follow the
same route. Pheromones evaporate over time. Eventually
the longer paths lose pheromone concentration and all ants
travel on the shortest path. For dynamic routing, Zhe et al.
[11] develop a variant of ACO algorithm that uses stench
pheromone to redirect ants to the second best route if the
best route becomes too crowded. The authors incorporate
traffic to the cost of each road segment as the total travel
time on the segment. Jos Capela, et al [12] propose a hybrid
algorithm of the Dijkstras algorithm and inverted ACO for
traffic routing. These algorithms are centralized solutions that
require global knowledge of the dynamic road network. In
[13], the authors proposes efficient GSR, an improvement
of the geographical source routing (GSR) protocol[6] using
small controlled packets called ants to communicate traffic
information and Dijkstra to recompute routes. This paper
presents a methodology that incorporates traffic information
in message communication routing for VANET, rather than
actual vehicle routing. A communication route with optimum
network connectivity is usually a road route with more traffic.
In addition, the re-computation using Dijkstra’s algorithm is
expensive. In [15] we propose a local aware hybrid routing
algorithm. In this algorithm, the VANET is divided into
zones [14]. Each zone proactively determines the routing
within its zone and reactively finds the routing paths within
zones. The algorithm is robust to link failures and is scalable.

III. PROPOSED SOLUTION

In this section we propose a solution that avoids using
the Cloud or personal computers for data processing. The
computations will be done on a dew computer. Each vehicle,
now-a-days is equipped with lots of technological devices for
performing many different functions such as heated seats,
backup cameras, cruise control, key less entry, navigation,
smart phone integration, automatic emergency braking and so
on. In the next five years, we predict that chips with multiple
processors will be installed on vehicles as they are on smart
phones.

Drivers use GPS to navigate their route. The path finding
algorithm is currently executed on Cloud and the information

is sent directly to the vehicle. Sensors on road side units
collect the necessary data to make accurate prediction of
the route. The traditional path finding algorithms [1], [2]
find only one path. The problem that may occur is the
disruption of Internet services which will hinder in finding
the route through Cloud. In the proposed solution, the routing
algorithm finds multiple paths. We assume that there is a
small and simple dew computer installed on each vehicle.
These days graphic processors are cheap. Each dew com-
puter will have a graphic processor installed to perform the
computations.

The multiple path finding algorithm that we propose to use
is the ant colony optimization algorithm. As per our previous
work [15], we divide VANET into zones.The vehicles within
the zone communicate with each other through short range
communication medium. The vehicles exchange information
about traffic conditions on the road. Using this information,
the ant colony optimization algorithm is run on the road
network.

Ant Colony Optimization is inspired by the foraging
behaviour of ants searching for food. In nature, ants leave
pheromone trails for the other members of the colony to
follow their routes from nest to food source. The pheromones
evaporate over time. As more ants travel a given path, the
intensity of the pheromone increases. This leads to a better
route and a shorter route.

The algorithm works in an iterative fashion. Initially, all
the routes between source and destination are initialized
with the same amount of artificial pheromone. In each
iteration, two steps are performed: solution construction and
pheromone update. In the phase of solution construction,
virtual ants are scattered on the roads. Each ant follows a
stochastic rule to choose the next intersection to visit, using
a probability function that favors shorter tour and strong
pheromone level. The phase ends when each ant completes
finding the paths from source to destination. In the phase of
pheromone update, pheromone level on all the routes evap-
orates (decreases) followed by an increment on the shortest
tour in the iteration. The pheromone serves as a global
memory, or an exploitation, to reinforce the local optimal.
The stochastic rule allows ants to find multiple different
solutions on several iterations and gives the algorithm enough
exploration to find possibly better solutions.

The data collected through V2V and V2I communication
mechanisms will serve as a basis for the routing algorithm.
The ant colony optimization algorithm is highly paralleliz-
able [16]. The algorithm can be easily parallelized on a
graphic processor [17]. In our proposed scheme we will im-
plement the ant colony optimization algorithm on the given
road network on a vehicle’s dew computer. The computer
comprises of graphic processing units that will parallelize
the algorithm and provide efficient routes in real time.

IV. CONCLUSION

The focus of this research is on intelligent transportation
system. Predicting a route in the event of traffic congestion
or other events on the road is challenging. Currently, Cloud

32

infrastructure is used to perform the routing computations.
In this research, we propose to remove the Cloud infrastruc-
ture and perform the routing algorithm on dew computers
installed on vehicles. We propose to develop a multi-path
finding algorithm using a meta-heuristic inspired by real ants
in nature.

ACKNOWLEDGMENT

The first authors thanks Research Manitoba for their
funding support in conducting this research. All authors
thank NSERC for their partial funding support.

REFERENCES

[1] E.W. Dijkstra, A note on two problems in connexion with graphs,
Numerical Mathematics, 1, 1959, 269271.

[2] P.E. Hart, N.J. Nilsson and B. Raphael, A formal basis for the heuristic
determination of minimum cost paths, IEEE Transactions on Systems
Science and Cybernetics. 4, 1968, 100107.

[3] G. Dimitrakopoulos and P. Demestichas, Intelligent transportation
systems. IEEE Vehicular Technology Magazine, 5, 2010, 7784.

[4] C.E. Perkins and E.M. Royer, Ad hoc on demand distance vector
(AODV) Routing, Proceedings of the Second IEEE Workshop on
Mobile Computing Systems and Applications, New Orleans, LA,
1999.

[5] B. Karp and H.T. Kung, GPSR: greedy perimeter stateless routing for
wireless networks,MobiCom, 2000.

[6] C. Lochert, H. Fuler, H. Hartenstein, D. Hermann, J. Tian, and M.
Mauve, A Routing strategy for vehicular ad hoc networks in city en-
vironments, Proceedings of the IEEE Intelligent Vehicles Symposium,
Columbus, OH, June 2003.

[7] Giuseppe Martuscelli, Azzedine Boukerche, Luca Foschini and Paolo
Bellavista, V2V protocols for traffic congestion discovery along routes
of interest in VANETs: a quantitative study, Wireless Communications
and Mobile Computing 16.17, 2016, 2907-2923.

[8] D.E. Kaufman DE and R.L. Smith, Fastest paths in time-dependent
networks for intelligent vehicle-highway systems application, Journal
of Intelligent Transportation Systems, 1(1), 1993, 111.

[9] L. Fu, An adaptive routing algorithm for in-vehicle route guid-
ance systems with real-time information, Transportation Research B:
Methodology, 35(8), 2001, 749765.

[10] Marco Dorigo and Gianni Di Caro, Ant colony optimization: a new
meta-heuristic, Proceedings of the congress on evolutionary computa-
tion, Vol. 2. 1999.

[11] Zhe Cong, Bart De Schutter, and Robert Babuka, Ant colony routing
algorithm for freeway networks, Transportation Research Part C:
Emerging Technologies 37, 2013, 1-19.

[12] Dias, Jos Capela, et al, An inverted ant colony optimization approach
to traffic, Engineering Applications of Artificial Intelligence 36, 2014,
122-133

[13] Forough Goudarzi, Hamid Asgari, and Hamed S. Al-Raweshidy,
Traffic-Aware VANET Routing for City EnvironmentsA Protocol
Based on Ant Colony Optimization.” IEEE Systems Journal, 2018.

[14] Jianping Wang, Eseosa Osagie, Parimala Thulasiraman, and Ruppa
K. Thulasiram. HOPNET: A hybrid ant colony optimization routing
algorithm for mobile ad hoc network. Ad Hoc Networks, 7(4):690705,
2009.

[15] Himani Rana, Parimala Thulasiraman, and Ruppa K. Thulasiram,
MAZACORNET: Mobility aware zone based ant colony optimization
routing for VANET, IEEE Congress on Evolutionary Computation,
Cancun, Mexico, 2013.

[16] Ziyue Wang, Ying Ying Liu, Parimala Thulasiraman and Ruppa
K. Thulasiram, Ant Brood Clustering on Intel Xeon Multi-core:
Challenges and Strategies, IEEE Symposium Series on Computational
Intelligence (SSCI), Banglore, India, 2018.

[17] Audrey Delvacq, Pierre Delisle, Marc Gravel and Michal Krajecki,
Parallel ant colony optimization on graphics processing units, Journal
of Parallel and Distributed Computing, 73(1), 2013, 52-61.

33

Dewblock: A Blockchain System
Based on Dew Computing

Yingwei Wang
School of Mathematical and Computational Sciences

University of Prince Edward Island
Charlottetown, Canada

Email: ywang@upei.ca

Abstract—The blockchain technology enabled cryptocurrencies
and a lot of other applications that trust is needed among
different entities. Because every blockchain client needs to keep
huge amount of blockchain data, some personal computers and
mobile devices cannot be used to run blockchain clients. To make
things worse, the size of blockchain data is always increasing.
In this paper, a new kind of blockchain system, Dewblock, is
introduced. In this system, a blockchain client does not need
to keep the blockchain data and it also has the features of a
blockchain full node. Dewblock was developed based on dew
computing principles and architecture.

Index Terms—Blockchain; Dew computing; Cloud-dew ar-
chitecture; Cloud services; Blockchain full client; Blockchain
lightweight client.

I. INTRODUCTION

Blockchain was first introduced with Bitcoin, a cryptocur-
rency, but blockchain is not limited to cryptocurrencies. It
can be used in various occasions. Ginni Rometty, the CEO
of IBM, once said: “Blockchain will do for transactions what
the internet did for information” [1].

Blockchain has a feature that limits the range of its ap-
plications: each blockchain full client has to keep the whole
blockchain starting from the genesis block; this blockchain
gets longer and longer with the operation of the blockchain
network. For this reason, a blockchain full client is not suitable
to be deployed to personal computers and mobile devices.

It is desirable to find solutions to tackle the above problem
so that the data size of a blockchain client can be reduced.
Such kind of solutions are hard to find because this problem
comes with the essential nature of blockchain. Blockchain data
itself is the heart of the blockchain technology; the data size
of a blockchain client is inherently big and inherently keeps
increasing.

For some cryptocurrency systems, such as Bitcoin and
Ethereum, their blockchains already have huge amount of
data; a quite powerful computer is needed to run a full
client. To make these cryptocurrency systems accessible by
users, blockchain lightweight clients were developed and are
widely used. These lightweight clients do not need to keep
the whole blockchain data so that they can be deployed to
personal computers and mobile devices. These lightweight
clients include SPV (Simple Payment Verification) wallets,
such as Electrum, Copay, and so on.

All the lightweight clients are not qualified as full clients.
They do whatever the majority of mining power says. They
rely on the support provided by full clients. These lightweight
clients are necessary and they are playing important roles in
the cryptocurrency systems. But the goal of this paper is not
to find another lightweight client.

Blockchains can be used in wide range of areas. Various
blockchain systems will be developed in the future for different
kinds of transactions. We want to propose a generic blockchain
client architecture so that these clients can be deployed to
personal computers and mobile devices and these clients still
have features of full nodes.

With such goals in mind, we would like to introduce
a new blockchain system: Dewblock [2]. Dewblock’s dew
clients do not keep blockchain data so that their data size is
very small; Dewblock’s dew clients still have features of full
nodes; Dewblock is based on dew computing principles and
architecture [3][4].

The rest of the paper is organized as follows: Section II
discusses the two models of blockchains and indicates that
the Dewblock approach can only be applied to blockchains
based on one model. The good news is that the model of
a blockchain can be changed. Section III, Section IV, and
Section V introduce the key concepts of Dewblock. Section VI
introduces the Dewblock project and its resources. Finally,
Section VII is devoted to conclusions.

II. STATE-KEEPING MODELS

The approach to control client data size that we are going to
introduce in this paper cannot be applied to arbitrary kinds of
blockchain systems. To determine each blockchain’s suitability
to our new approach, we discuss the state-keeping models of
blockchains in this section.

Blockchains can be considered as state transition systems
or state machines [5]. Different state-keeping models can
be used. Two types of state-keeping models are popular in
todays blockchain networks. The first model is the unspent
transaction output (UTXO) model. The second one is the
account model. For example, Bitcoin uses the UTXO model
[6], and Ethereum uses the account model [5].

Being the first blockchain system, Bitcoin is operated using
the UTXO model. In the UTXO model, each transaction
spends output from prior transactions and generates new

34

outputs that can be spent by transactions in the future. All of
the unspent transactions are kept in each full client. A user's
wallet keeps track of a list of unspent transactions associated
with all addresses owned by the user, and the balance of the
wallet is calculated as the sum of those unspent transactions.

The account model, on the other hand, keeps track of the
balance of each account as a global state. When a transaction
is being verified, the balance of an account is checked to make
sure it is larger than or equal to the spending amount of the
transaction.

Each of these two models has its advantages and disadvan-
tages. The features of these two models have been discussed
in literature [7][8]. From our viewpoint, we believe that the
difference between these two models is that they have different
thinking logic or different philosophy: the UTXO model is
history oriented; the account model is reality oriented.

As Satoshi Nakamoto mentioned in his historic paper [6]:
“We define an electronic coin as a chain of digital signatures.
Each owner transfers the coin to the next by digitally signing
a hash of the previous transaction and the public key of the
next owner and adding these to the end of the coin. A payee
can verify the signatures to verify the chain of ownership.”
Using an analogy, if you want to verify a coin is true in our
daily life, you have to go over all the transactions this coin
went through: the transaction that person A gave the coin to
you; the transaction that person B gave the coin to person A,
and so on, until the coin was made in the mint.

This logic works, and might be meaningful in some sense,
but it is in contrary to our daily practice. Using this model,
all the transactions since the start of the blockchain should
exist and ready for verification. Banks usually keep detailed
transaction history for quite a long time, but no bank will
keep all its transactions forever. As time goes by, the size of
the transaction history gets bigger and bigger. This model is
not sustainable; at least it is not sustainable for most clients
in a blockchain network.

Using account is our daily practice in keeping records.
People’s money saved in bank accounts. Each student has
a profile in his/her university and this profile is called an
account. The key points of an account-based system is that the
accounts reflect current state of the system and these accounts
do not rely on the complete history of the system, whether the
system is a bank, an organization, or a blockchain.

Our efforts to develop small-data-size blockchain clients
shall be based on the account-model blockchains instead of
the UTXO-model ones. This restriction does not limit this
approach’s application because UTXO-model blockchains can
be converted into account-model blockchains.

The new blockchain system we are going to introduce,
Dewblock, was developed from another blockchain system:
Naivecoin [9]. Naivecoin uses UTXO model. To reach our
goals, we have switched Naivecoin from the UTXO model to
the account model. For convenience of discussion, we would
like to give a name to the Naivecoin system that has been
switched to account model: Account-Naivecoin.

The successful conversion of Naivecoin from the UTXO
model to the account model shows that the new approach we
have introduced in Dewblock can be applied to all blockchain
systems, although a conversion might be needed. In the future,
when new blockchain systems are designed for various kinds
of transactions, account model shall be used if we want to
adopt the Dewblock approach.

III. DEWBLOCK ARCHITECTURE: CLOUD-DEW
ARCHITECTURE

Dewblock is designed based on cloud-dew architecture [3].
A Dewblock package is composed of a cloud server and a
dew server; the cloud server and the dew server talk to each
other through a new type of message channel; the dew server
operates in two different modes. These topics will be discussed
in the following subsections.

A. Cloud Server and Dew Server

To introduce cloud-dew architecture to Account-Naivecoin
blockchain system, we would use two copies of Account-
Naivecoin client. Using the terminology of cloud-dew archi-
tecture, we call one Account-Naivecoin client cloud server,
and call the other Account-Naivecoin client dew server. Here
we need to clarify a few terms. The term client which appeared
in blockchain client, full client, lightweight client, Account-
Naivecoin client means a client of the blockchain network. The
term server which appeared in cloud server and dew server
means a server to a user. Thus a cloud server or a dew server
could act as a blockchain client; a blockchain client could be
considered as a cloud server or a dew server. In the rest of the
paper, terms cloud server and dew server refer to software or
program package; terms dew client and full client refer to this
software’s role in a blockchain network.

The names cloud server and dew server make sense because
the cloud server usually be deployed to a public cloud service,
such as Amazon Web Services or Google App Engine, or a
private cloud service where the environment is configured to
support such cloud servers, and the dew server usually be
deployed to a personal computer or a mobile device.

The dew server is basically a copy of the cloud server but
is not necessarily the exact copy of the cloud server. In this
case, we would like to introduce an important and interesting
difference between the cloud server and the dew server: The
cloud server contains the blockchain but the dew server does
not contain the blockchain. In such a system, the data size of
the dew server would be quite small.

Before we go further from here, we should make one thing
clear: Account-Naivecoin uses account model, but it does
keep the blockchain. Can a dew server operate without a
blockchain? In other words, is it possible for an Account-
Naivecoin client without the blockchain to work with the rest
of the Account-Naivecoin blockchain network?

The answers to the above questions are both positive. We
may modify the dew server copy of the Account-Naivecoin
so that it does not keep the blockchain but otherwise it still
operates in the same way. In an Account-Naivecoin blockchain

35

network, if one client throws out the blockchain, it can still
operate well in the network: it can make transactions; it can
maintain the transaction pool; it can communicate with other
clients; it can verify if a transaction is valid; it can even mine
a new block. The only problem this client has is that when
another client asks this client to provide the whole blockchain,
this client cannot respond properly.

An Account-Naivecoin client without the blockchain can
operate for most of the cryptocurrency functions, but it is
not a blockchain full node. This client does not have enough
strength to fight attacks. If only a few clients work this way, the
whole blockchain network would still run properly; if many
clients are not full nodes, the whole blockchain network would
deteriorate, and the trust brought in through blockchain would
be gone.

In Dewblock, a dew server is not a blockchain full node,
but a cloud server is. The pair of a cloud server and a dew
server can also serve as one single full node to the rest of
the Dewblock network. In blockchain terminology, node and
client were considered the same. In Dewblock, node and client
are not always the same any more. A blockchain client is a
program that a user installed in his/her computer or device to
operate a blockchain network. A blockchain node is a logical
unit that acts as one single identity in a blockchain network.
A node may contain a cloud server and a dew server, but a
client is always a dew server.

B. Message Channels

In an Account-Naivecoin network, only one kind of mes-
sage channel exists: inter-node channel. When the cloud-dew
architecture was introduced, another kind of communication
channel was needed for cloud servers and dew servers to
collaborate. The new kind of message channel between cloud
servers and dew servers is called cloud-dew channel. Web-
Socket protocol was used to create such channels.

In an Account-Naivecoin network, five kinds of messages
travel through the inter-node channels. In a Dewblock network,
four more kinds of messages were added and they could
travel through the inter-node channels and the new cloud-dew
channels. Some messages can travel in both kinds of channels;
some messages can only travel in one specific kind of channel.
The details of the message mechanism can be found in the
website http://www.dewblock.com. In the rest of this section,
Section IV, and Section V we will explain the rationals related
to the four kinds of newly-added message types.

Two new message types are introduced to transfer account
information through cloud-dew channels:

• QUERY ACCOUNTS
• RESPONSE ACCOUNTS.
To make sure that the account in a dew server is consistent

with the account in a cloud server, the dew server will peri-
odically send its account information to the cloud server for
verification. If discrepancy is found, the account information
in the cloud server will be fetched to the dew server to replace
the account information in the dew server.

C. Simple Node and Cloud-dew Node

In some situations, a dew server may want to operate as a
full client for various reasons. Such option should be provided
to users in case it is necessary. Thus a dew server can operate
in one of the two modes: dew mode and full mode.

When a dew server is in dew mode, it behaves as described
in Section III-A and Section III-B, and we call this dew server
a dew client. The cloud server and the dew client constitute
a single Dewblock node, and we call this node a cloud-dew
node.

When a dew server is in full mode, it behaves the same with
an full Account-Naivecoin client, and we call the dew server
a full client. In this mode, the dew server itself constitutes a
Dewblock full node, and we call this node a simple node. The
cloud server is not involved in the operation of a simple node;
it may be turned off, may be operated as a separate node, or
may be even not deployed at all.

From here on, we may use terms dew client or full client to
replace the term dew server whenever it is appropriate. With
these terms, the mode of the dew server is indicated.

A dew server can change its mode: it can be switched from
full mode to dew mode, or vice verse.

When a dew server is switched from local node to dew
mode, it needs to establish the cloud-dew channel with the
cloud server described in its configuration file, to establish its
connections with other nodes as described in Section IV, and
to discard the blockchain to become a small-data-size dew
client.

When a dew server is switched from dew mode to full mode,
it needs to obtain the blockchain from another place. One of
the possibilities is to establish an inter-node channel with the
cloud server to obtain the blockchain. The cloud-dew channel
between the cloud server and the dew server shall be cut off.
It also needs to re-establish its connections with other nodes
according to its new role.

IV. PAIR CONNECTION PROTOCOL

There are two types of nodes in a Dewblock network: simple
nodes and cloud-dew nodes. Here we discuss the process to
establish connections between nodes. First, proper connections
can be described in the following:

• When two simple nodes are getting connected, one inter-
node channel is needed to connect them.

• When one simple node and one cloud-dew node are
getting connected, two inter-node channels are needed:
one to connect the simple node to the dew client of the
other node and one to connect the simple node to the
cloud server of the other node.

• When two cloud-dew nodes are getting connected, two
inter-node channels are needed: one to connect the two
dew clients of the two nodes and one to connect the two
cloud servers of the two nodes.

We make a few assumptions:

• Connections are initiated by dew clients or full clients.

36

• A client knows its own mode. If it is in dew mode,
it knows the address of its cloud server through its
configuration file.

• A client needs to know the address of another client to
establish a connection.

• A client does not have to know the types of other clients
(full clients or dew clients) , although it may get to know
their types after exchanging messages.

We need to create rules so that connections between nodes
can be properly established. For the convenience of discussion,
we use an analogy to describe the above situation.

In a community, people need to get connected. We make
the following assumptions:

• Every person is in a family. A family could have a
gentleman and a lady or a single lady. A family cannot
only have a single gentleman.

• Every family has a contact person. A gentleman or a
single lady is the contact person. Connections could
be initiated by any contact person to any other contact
person. Somehow contact persons can find each other.
Each contact person decides if a connection request will
be accepted.

• A proper connection between two families can be de-
scribed in the following: a gentleman is connected to a
gentleman; a lady is connected to a lady; a gentleman is
connected to a lady only when the lady is single.

We create the following rules so that proper connections
among families can be established.

Gentleman’s Rule:
• Whenever he is involved in a connection, actively or

passively, he would make an introduction: “My name is
Mr. Blah. It is my honor to introduce my wife Mrs. Blah
to you.”

• Whenever he receives such an introduction from another
gentleman, he passes the introduction to his wife.

Lady’s Rule:
• Whenever she receives an introduction from her husband

or another gentleman, if she does not know the introduced
lady yet, she would connect with that lady and tell her
who introduced her.

• Whenever she receives a connection request and was told
who introduced her, she will accept the request only if
the introduction was from her husband.

The above rules can make sure all the ladies and gentle-
man are properly connected. We refer to these rules as Pair
Connection Protocol.

To implement the Pair Connection Protocol in Dewblock,
one more type of message was added. This message type is
ALTERNATE ADDRESS. This type of message can travel in
both inter-node channels and cloud-dew channels.

Whenever a dew client initiates a connection or receives a
connection request, it sends out an ALTERNATE ADDRESS
message to the other end of the connection. Whenever a dew
client receives such a message, it passes this message to its
cloud server.

Whenever a cloud server or a full client receives an
ALTERNATE ADDRESS message, it first checks if such a
connection already exists; if not, it initiates a connection with
the address specified in the message and sends this message
to the receiver. When a cloud server receives a connection
request and an ALTERNATE ADDRESS message, it verifies
that the message was originated from this cloud server’s dew
server before it accepts the connection.

V. COLLABORATION MECHANISMS

Let us continue to use the family analogy introduced in
Section IV to describe Dewblock’s collaboration mechanisms.
These descriptions further reveal the features of Dewblock,
and also demonstrate the important role of family analogy in
inspiring and explaining these mechanisms.

A. Integrity Keeping

If a dew client can perform all cryptocurrency operations,
why do we need a cloud server? In other words, why do we
need to operate a full node? The following analogy provides
an explanation.

All families in a community need to maintain the commu-
nity’s justice and well being. They need not only to work for
their own families, but also to vote for the community for
various reasons. Every family should have a voter. To satisfy
this requirement, every family designates the lady of the family
as the voter. Whenever a vote is called, the gentlemen would
ignore the call, but the ladies would vote. In a community with
strict rules, if a family does not participate voting for a while,
this family shall be excluded from the community.

In Dewblock, we have a similar situation. Each node has its
responsibility to keep the integrity of the blockchain network.
Each node needs not only to operate the node’s own functions,
but also to keep the whole blockchain and provide the whole
blockchain to other nodes when needed. The cloud server
or the full client of each node are designated to fulfill this
responsibility. The dew client of each node would ignore the
request to provide the whole blockchain. Strictly speaking, If a
node does not fulfill its responsibility in keeping the integrity
of the blockchain network for a while, this node might be
disconnected from the network. This exclusion rule has not
been implemented in Dewblock code yet and is on our future
agenda.

B. Mining in Cloud

Block mining is an important activity in blockchains. How
is mining performed in Dewblock? Let us check the similar
situation in the family analogy first.

All families in a community have meals together in a shared
fashion. It is an honour for a family to cook for the community.
Gentlemen can cook, but ladies cook better. Single ladies know
when to cook, but wives only cook when their husbands ask
them to do so.

Let us go back to Dewblock. Dew clients can perform block
mining. Because mining takes huge amount of computing
power, it may seriously influence the normal operation of a

37

personal computer or a mobile device where the dew client
is running. A better arrangement would be to ask the cloud
server to mine a new block on behalf of the dew client. A new
kind of message, MINING REQUEST, was introduced. This
kind of message travels through cloud-dew channels. When
such a message is received, the cloud server tries to mine a
new block; if successful, the new block will be added to the
Dewblock network.

VI. DEWBLOCK PROJECT

Dewblock is a blockchain cryptocurrency system that was
developed as a proof-of-concept system for the principles
described in this paper. It can be modified to accommodate
transactions on records other than cryptocurrencies.

Dewblock was developed on top of an open source project
Naivecoin [9][10]. Naivecoin is a blockchain cryptocurrency
system. It tries to show that the basic principles in a cryp-
tocurrency can be implemented in a concise way. Naivecoin
uses the UTXO model.

Dewblock was developed through the following major
changes to Naivecoin:

• Naivecoin’s underlying state-keeping model has been
changed from the UTXO model to the account model.
Such modified Naivecoin was referred to as Account-
Naivecoin in this paper.

• Cloud-dew architecture was introduced. Dewblock
contains two packages: Dewblock-cloud-server and
Dewblock-dew-server. These two packages are modified
versions of Account-Naivecoin.

• Dew servers can operate in two different modes: dew
mode and full mode. When a dew server is in dew mode,
it operates without the blockchain.

• A new kind of message channel, cloud-dew channel, was
added. Four new types of messages were added.

• Pair Connection Protocol was implemented.
• Collaboration mechanisms, such as integrity keeping and

mining in cloud, were implemented.
• Web commands were updated; configuration files were

added.
The source code of Dewblock is stored in Github [11]

as open source software under Apache License. The imple-
mentation details and operation instructions can be found in
http://www.dewblock.com.

The most significant feature of Dewblock is that it provides
a dew client; the dew client does not keep blockchain data; the
dew client is part of a blockchain full node. Such dew clients
can be introduced in various blockchain systems and deployed
to personal computers and mobile devices.

VII. CONCLUSIONS

At the heart of the blockchain technology, a distributed
secure ledge, a blockchain, is stored in every node of the
network and trust can be established among unknown parties.
By definition, blockchain data has to exist in every node and
the data amount increases with time. Thus, the problem we are
trying to tackle, blockchain clients’ data size is too big and

always increasing, is inherent to this technology. In the past,
some approaches have been proposed to reduce the data size
of blockchain clients, but these clients do not have the status
of full nodes. Although these approaches provide convenience
to users, they cannot be used in the backbone of blockchain
networks.

Dewblock brings in a new approach that the data size of a
client is reduced and the features of a full node are still kept.
The key point is that the two concepts, blockchain client and
blockchain node, are not the same any more in Dewblock.
While a client is light-weighted and is conveniently operated
in a personal computer or a mobile device, the client works
with a remote cloud server to act as a full node.

This approach was inspired by dew computing principles.
The architecture of Dewblock is the cloud-dew architecture.
A dew client operates independently to perform blockchain
activities; it also collaborates with the cloud server to maintain
the integrity of the whole blockchain network. Two major
features of dew computing, independence and collaboration,
are demonstrated clearly in this application.

With Dewblock, each blockchain user needs to deploy a
cloud server to a cloud service. From technical and economical
viewpoint, the widely use of cloud services by individual users,
including blockchain users, is feasible and affordable. Appar-
ently, Dewblock, as a dew computing application, promotes
the usage of cloud computing. This fact demonstrates the
relationship between dew computing and cloud computing:
cloud computing enabled dew computing; dew computing
further promotes cloud computing; dew computing is the
complementary piece of cloud computing [12].

REFERENCES

[1] Sthuthie Murthy. (2018, May) “Blockchain will do for
transactions what the internet did for information” -
says IBM CEO. [Online]. Available: https://ambcrypto.com/
blockchain-for-transactions-internet-for-information-ibm-ceo/

[2] Yingwei Wang. (2018, Sept.) Dewblock. [Online]. Available: http:
//www.dewblock.com/

[3] Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199–210, 2015.

[4] Yingwei Wang, “Definition and categorization of dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1–7, 2016.

[5] Vitalik Buterin. (2013, Dec.) A next-generation smart contract
and decentralized application platform. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White-Paper#ethereum

[6] Satoshi Nakamoto. (2009, May) Bitcoin: A peer-to-peer electronic cash
system. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[7] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2202–2303, 2016.

[8] Brian Curran. (2018, Jul.) Comparing bitcoin & ethereum: UTXO
vs account based transaction models. [Online]. Available: https:
//blockonomi.com/utxo-vs-account-based-transaction-models/

[9] lhartikk. (2017, Dec.) Naivecoin: a tutorial for building a cryptocurrency.
[Online]. Available: https://lhartikk.github.io/

[10] ——. (2017, Dec.) Naivecoin. [Online]. Available: https://github.com/
lhartikk/naivecoin

[11] Yingwei Wang. (2018, Aug.) Dewblock. [Online]. Available: https:
//github.com/yingweiwang/dewblock

[12] A. Rindos and Y. Wang, “Dew computing: The complementary piece
of cloud computing,” in Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom)(BDCloud-SocialCom-SustainCom),
2016 IEEE International Conferences on. IEEE, 2016, pp. 15–20.

38

Keyword Index

Bio-inspired computing 31
Blockchain 20, 34
Blockchain full client 34
Blockchain lightweight client 34

Cloud computing 8, 14, 20
Cloud Fog Dew Computing 25
Cloud services 34
Cloud Storage 14
Cloud-dew architecture 34
Cloudlet 1, 20
computation offload 1
Computational modeling 8

Dew computing 1, 8, 14, 20, 31, 34
Dropbox 14

Edge computing 1, 20

Fog computing 1, 14, 20
Formal specifications 8

Google Drive 14
Graphics Processing 31

Internet of Things 20

Mobile applications 20
Mobile Cloud Computing 1

Network topology 20

One Drive. 14

Rainbow global service 25
Routing 31

Servers 8
Service ecosystem 25
Service modeling 8

Turing machines 8

Vehicular Ad hoc Networks 31

39

Version Management 14

40

