PROCEEDINGS
The 4th International Workshop on

Dew Computing

(DEWCOM 2019)
Editors: Ruppa Thulasiram, Ralph Deters,

ot-10*" November 2019

DEWCom

PATRONAGE

Table of Contents

Preface . ..o ii
Program Committee iii
Dew Computing Architecture for Cyber-Physical Systems and IoT 1

Marjan Gusev

Post-cloud Computing and Its Varietieso i 8
Parimala Thulasiraman and Yingwei Wang

Decentralized Hardware Ownership Control: Dew Computing with Blockchain............ 11
Yingwei Wang and Marjan Gusev

Dew Text Application Development e 14
Ruppa Thulasiram, Srija Srivastava, Sarada Kiranmayee Tadepalli, and Parimala
Thulasiraman

Keyword INdex.o e 26

Preface

This proceedings contains the papers presented at DEWCOM 2019: The 4th International
Workshop on Dew Computing held on November 9-10, 2019 online through the Zoom platform.

DEWCOM is an annual international workshop on dew computing. The first one, DEWCOM
2016, was held in Charlottetown, Canada. The second one, DEWCOM 2017, was held in Opa-
tija, Croatia. The third one, DEWCOM 2018, was held in Toronto, Canada together with the
28th Annual International Conference on Computer Science and Software Engineering (CAS-
CON 2018).

Dew computing is a post-cloud computing model appeared in 2015. While cloud computing
uses centralized servers to provide various services, dew computing uses on-premises computers
to provide decentralized, cloud-friendly, and collaborative micro services to end-users.

Dew computing is an on-premises computer software-hardware organization paradigm in
the cloud computing environment, which does not contradict with cloud computing, does not
replace cloud computing, but it is complementary to cloud computing. The key features of dew
computing are that on-premises computers provide functionality independent of cloud services
and they also collaborate with cloud services. Briefly speaking, dew computing is an organized
way of using local computers in the age of cloud computing.

DEWCOM 2019 was organized by IEEE Computer Society Dew Computing Special Techni-
cal Community (DewCom STC). Currently, DewCom STC members are spread in 28 different
countries: Canada, USA, Croatia, Austria, Germany, Romania, Sweden, Ukraine, United Arab
Emirates, United Kingdom, Argentina, Colombia, El Salvador, China, India, Pakistan, Aus-
tralia, Macedonia, Nepal, Switzerland, Portugal, Ghana, Turkey, Cyprus, Malaysia, Brazil,
Sweden, and New Zealand.

Each submission to DEWCOM 2018 was peer-reviewed by three reviewers according to the
standard IEEE protocol. The committee decided to accept 4 papers. Among these papers,
two papers involved discussions with other related areas, such as Cyber-Physical Systems and
Post-cloud Computing; one paper involved blockchain technology; one paper introduced dew
computing API.

November 10, 2019 DEWCOM 2019 Co-Chairs:
Ruppa Thulasiram, University of

Manitoba, Canada

Ralph Deters, University of

Saskatchewan, Canada

Yingwei Wang, University of Prince

Edward Island, Canada

LCover Design: Karolj Skala,

ii

Program Committee

Yingwei Wang
Karolj Skala

Ruppa Thulasiram
Marjan Gushev
Ralph Deters
Parimala Thulasiram
Shuhui Yang

Sven Groppe

Dana Petcu

Partha Pratim Ray

University of Prince Edward Island, Canada (Chair)
Ruder Boskovic Institute, Croatia

University of Manitoba, Canada

Ss. Cyril and Methodius University, Macedonia
University of Saskatchewan, Canada

University of Manitoba, Canada

Purdue University Northwest, USA

University of Liibeck, Germany

West University of Timisoara, Romania

Sikkim University, India

iii

Dew Computing Architecture for Cyber-Physical
Systems and IoT

Marjan Gusev, Senior Member, IEEE

Abstract—The concept to be on the edge of the Internet
network means that the analyzed devices and systems will work
only as a part of a general common integrated system, such as in
the case of cyber-physical systems and various devices that act as
Internet of connected Things. Although post-cloud architectures
are most commonly associated with edge computing, a focus in
this paper is set on dew computing architecture that extends
this concept with a specific architecture out of the edge. The
dew computing implementation in cyber-physical systems allows
autonomous devices and smart systems, that can collaborate and
exchange information with the environment, still be independent
of other external systems or perform in a connected more
complex cyber-physical system of systems. This paper aims at
presenting an architecture of applying dew computing for cyber-
physical systems, elaborating the new features and functionalities
and comparing it to other similar architectures.

Index Terms—Edge computing; post cloud architecture;
cloudlet; fog computing; CPSoS, cyber-physical systems

I. INTRODUCTION

Integrations of computational and physical processes define
cyber-physical systems (CPS) [1], [2], enabling an environ-
ment where the physical and virtual worlds merge [3] as
human-operated automated systems [4], or with a mental world
[5]. Research challenges of CPS [6] include the design and de-
velopment of next-generation devices and systems, including
airplanes and space vehicles, hybrid gas-electric vehicles, fully
autonomous urban driving, and prostheses that allow brain
signals to control physical objects [4].

A majority of today’s processors are realized as units
embedded in various CPS, by means of sensors and actuators
(sensing and acting on the environment) and increasingly
connected with one another over the Internet. This distributed
and connected approach means a lot more than just an appli-
cation of information and communication technology (ICT). A
multiple interdisciplinary knowledge is integrated for relevant
physical perception and cognition, controlling the CPS.

The proliferation of various sensing devices in a
communicating-actuating network creates the Internet of
Things (IoT) [7]. It refers to Internet-based protocols through
information sensing equipment to conduct information ex-
change and communications in order to achieve smart recog-
nitions, positioning, tracing, monitoring, and management [8].
This concept is related to the CPS concept since IoT presents
the connection to the physical world, while sophisticated
algorithms and intelligence runs on a more complex cyber
world.

A CPS may become a part of a more complex system of
systems, defining a cyber-physical system of systems (CPSoS)
[9]. Web of things [10] is another approach to connect various

CPS in a more sophisticated networked system, which is
particularly a realization of the same idea. Industry 4.0 is
closely related with the IoT and CPS [11] as a concept that
brings the fourth industrial revolution based on heterogeneous
data and knowledge integration, agile and dynamic production
systems, improvement of the overall system effectiveness and
efficiency.

The emergence of Cloud computing introduced offloading
data and computations to cloud servers for further process-
ing and storage. Post-Cloud architectures [12] include Edge
computing [13], bringing the computing closer to the user and
distributing it across various hierarchical architectural layers,
solving several technological challenges, such as energy effi-
ciency, reducing bulk data transfers, etc.

In the beginning, the term edge computing was associated
with content delivery networks to distribute software via edge
servers [14]. At a later stage, edge computing was imple-
mented mostly as fog computing, when the network operators
define the architecture as a highly virtualized platform that
provides compute, storage, and networking services between
end devices and servers in the cloud [15]. The idea was
initiated to provide a solution for various IoT devices and
specify more powerful processing node at the edge of the
Internet, and acts as a decentralized cloud architecture.

The idea of introducing cloudlets was initiated by virtual
machines (VM) based mobile computing [16] for processing
closer to the user when the data source is in the cyber world.
A nice overview of cloudlet challenges and features [17]
specifies the corresponding architectural approaches to realize
computing closer to the data source using data both from the
physical and the cyber world.

However, these approaches to locate the processing facilities
in the proximity of data source do not solve the CPSoS
resilience problem initiated when a smaller CPS will stop
performing in case of a drop of connectivity to a more
complex CPSoS, which may lead to severe consequences.
Imagine an autonomous car when driving on a road where
the white marking lines are erased and not visible. Should an
autonomous car stop, or continue to drive analyzing where is
the road by own algorithms. In addition to this, the problem
of consistent and highly productive design of new CPSoS-s is
another obstacle,

Dew computing is an additional layer between end-user de-
vices, such as smart modules that convert physical parameters
into digital information and vice-versa, and processing and
coordination in the Edge/Fog/Cloud layers, offering autonomy,
independence and collaboration features.

A scalable distributed architecture wase analyzed from the
aspect of the computing and data source locations [18]. Wang
[19] defines and categorizes the dew computing more precisely
extracting the independence and collaboration features.

Developing new methods sets a lot of challenges to build
high-confidence CPS. This paper addresses the applied archi-
tecture to satisfy the user and computing requirements.

The rest of the paper is organized as follows. Related
work on corresponding CPS and IoT features, along with
introduced and developed architectures are analyzed as related
work in Section II. Section III specifies the user and computing
requirements of trending CSPoS requirements analyzing them
from the dew computing aspect, and presents a new architec-
ture that matches these requirements. Section IV compares the
existing architectures with introduced architecture that applies
the dew computing concept into CPSoS and IoT solutions.
Finally, Section V gives relevant conclusions.

II. RELATED WORK

An overview of CPS is presented in several review papers
[20], [2], [21], [6], [22], [23]. Here, the focus is set on analysis
of CPSoS features and building architectures in order to
point out the differences and additions for the dew computing
concept implementations.

A. Analysis of features

Maier [24] defines the following five key characteristics of
SoS:

« Operational independence of the components of the over-
all system

« Managerial independence of the components of the over-
all system

o Geographical distribution

« Emerging behaviour

« Evolutionary development processes

Engell [9] defines cyber-physical systems of systems (CP-
SoS) as CPS which exhibit the features of systems of systems:

o Large, often spatially distributed physical systems with
complex dynamics,

« Distributed control, supervision and management,

o Partial autonomy of the subsystems,

« Dynamic reconfiguration of the overall system on differ-
ent time-scales,

« Continuous evolution of the overall system during its
operation,

o Possibility of emerging behaviours,

The following main CPS [1], [25] characteristics and main

design challenges are:

o heterogeneous in the sense that they combine various
models of computations relying on both discrete and
continuous time abstractions;

o platform-aware and resource-constrained, and thus the
software depends on various non-functional properties
imposed by the platform;

o time-sensitive and often safety-critical

o widely distributed with heterogeneous interconnections

Here, the definition expands the partial autonomy to system
and subsystem autonomy, where various parts can work inde-
pendently of other system parts and systems, and are capable
to collaborate by exchanging data.

Gunes et al. give a nice overview of research challenges
for CPSoS [6], which include related computing and user-
related requirements. Wan et al. [26] covers the advances in
CPS research pointing out the essential challenges. Challenges
and trends for future research on Industry 4.0 and their impact
on CPS and IoT are analyzed by a systematic and extensive
review covering the critical issues of the interoperability [11].
The research challenges of big data techniques as a huge
potential to be applied in the CPS was analyzed by Xu
and Duan [27], especially analyzing the Industry 4.0 aspects
or improving the system scalability, security, and efficiency.
Here, the overview covers those essential requirements and
challenges related to the implementation of the dew computing
concept.

Platforms that spcecify processing closer to the data source
can include data analytics on the edge [28] or deviceless
approach [29].

B. Architectural modelling

A four-layer architecture for an embedded system that
realizes a CPS is defined by Lee [1] analyzing the complexity
of implemented software in a typical embedded system. The
lower level consists of silicon chips for processors, memory
and control. The next level refers to executable programming
primitives, and the third level to programs that implement
higher-level languages. Task-level models are found on the
fourth level, where performance and actor-oriented models are
implemented.

Tan et al. [30] define a prototype architecture for CPS by
defining the functional parts of such a system. They specify
that a typical architecture of a traditional embedded system
consists of a physical system that integrates actuators, a
cyber system with sensors that sense the signals and convert
them into information, and a higher-level control unit, which
connects the cyber and physical parts providing necessary
control. Their prototype enhances this architecture to a CPS
architecture by adding a part which exchanges data with other
networked systems and CPS units.

A holistic view on the functional parts of a CPSoS is
presented by Gunes et al. [6]. The access to the physical world
is realized with sensing networks and control with actuator
network. A communication network is used to connect these
units to the decision making CPS.

Lee at al. [25] define a five-layer architecture for building
CPS architecture for Industry 4.0, analyzing the functionality
of different computing levels. The lowest level is the smart
connection level contains the signal sensing devices that
collect data in various formats, speed and volume. Data-to-
information conversion is the next level, which aims at realiz-
ing smart analytics and multi-dimensional data correlation to
provide a self-aware feature. The third level is the cyber level,

where Information is being collected by connected machines
and extracting additional information with specific analytics to
provide self-comparison among similar machine performance
and historical information. Cognition is the fourth level to
process and exploit collected information of the monitored
system by collaborative diagnostics and expert systems to
take correct decisions on the priority of tasks and transfer
acquired knowledge to users. The last (fifth) level refers to
configuration, that acts as feedback from cyber to physical
space, and as supervisory control to make machines become
resilient, self-configurable and self-adaptive.

A structure of a networked system is analyzed by Kim and
Kumar [21], where the essential functional units are those that
represent the physical system (plant) and the cyber system
(controller) connected by a network control unit. Their analysis
covers the aspects from the control theory and automation, and
application to real-time computing and networking.

Liu et al. [23] analyze the architecture based on the three
layers, user, cyber and physical layers. The information sys-
tem is at the heart of the cyber layer, in order to collect
data, process information, make decisions and activate control
mechanisms. The physical layer is represented by a sensor
to analyze signals and collect data; and executor to activate
controlling and change of the physical system.

Dastjerdi and Buyya [31] define a fog-computing archi-
tecture with IoT sensors and actuators as a bottom layer;
corresponding applications to enhance their functionality at a
specific edge and cloud resources layer; multitenant resource
management at a network layer using fog computing with the
edge devices and cloud services; quality-of-service enforce-
ment at the resource-management layer, and finally, at the top
layer, applications to deliver intelligent services to users.

Post-cloud computing paradigms bring the processing closer
to the source where data is produced to avoid latencies [12],
and include future architectures for IoT and CPS applications
[32] A cloud-edge computing framework for CPS social ser-
vices [33] specifies that edge devices provide services to cyber,
physical and social worlds (CPSoS) if they integrate their
services, share and exchange information via cloud computing.
In this context, the architecture analyzed from the location
where the computing is performed classifies the application,
cloud and edge planes.

Lopez et al. [34] discuss that edge-centric computing en-
compasses the proximity, intelligence, trust, control and hu-
mans at the edge, as essential features different from cloud
computing.

The fog computing architecture has been supported by the
mobile operator and network providers to provide IoT. A
typical architecture [15] defines data centers at the cloud layer,
network operations at the core layer, multiple services at the
edge layer and embedded systems and sensors at the bottom
IoT layer.

Yanunuzzi et al. [35] analyze a mobile cloud computing
scenario, as they address the mobility an essential feature of
the IoT. Their approach is based on an architecture stack with

service and applications at the top layer, followed by a cloud
domain, network domain and the IoT domain.

A generic dew computing architecture [36] locates four tiers
as cloud, fog, edge and dew computing, mainly as a location
where the computing is performed correspondingly to data
centers, distributed networking and computing servers, edge
devices and dew servers and units at the lowest tier.

A novel fluid architecture for cyber-physical production
systems [37] introduces three main layers to be cloud, fog
and field, where the edge is defined to be at the bottom of
the fog layer, and also in the dew computing layer and the
IoT layer. In this context, dew computing is defined as a layer
with very basic embeddable extensions to native computational
capabilities of physical devices, and as an entry point to the
distributed network.

A cloud-dew architecture [38] has been specified by Wang,
mainly as a part of a cyber world, specifying details on
a dew server. This corresponds to the definition of a dew
computing layer, where the devices can be independent of the
external systems, and also collaborate with them if there is an
availability of the corresponding architecture. This concept has
been extended to the physical world with IoT devices [39] by
specifying a dew computing solution for [oT streaming devices
[40].

III. ARCHITECTURE

The application of the dew computing concept in CPSoS
and IoT targets the following distributed and networking
computing elements:

o Smart modules, including IoT sensors, IoT actuators,

embedded chips, etc.;

o Smart devices, such as smartphones, smartwatches, and
tablets;

« Edge devices, such as home communication, entertain-
ment and storage systems, or other networking equip-
ment;

o Edge servers, including home personal computers and
servers, cloudlet servers, servers located at mobile op-
erator’s base stations;

¢ Cloud servers, offering laaS, PaaS and SaaS, where the
integrated applications run and exchange data.

Fig. 1 presents the architectural layers, where the dew
computing concept is integrated in the implementation of CPS
and IoT.

The smart modules level makes the connection to the
physical world. It consists of IoT devices, usually realized
as small wearables and sensors, which are battery operated
mobile devices with a wireless connection. They communicate
with low energy radio communication technologies as personal
area network (PAN) to the higher layer to preserve the energy
consumption as much as possible,

The next level consists of smart devices, which represent
the dew computing level. These devices are on the edge
on the network, and it is not obligatory that they will have
a permanent Internet connection. Their responsibility is to
connect to the end-user IoT devices and collect the sensed data,

Cloud
servers

()
Edge
Servers :
Cloudlets Base station LAN/
.......... Internet ... sever . RAN
network
PCs ((i)) Networking
Edge
N H
= ome 0 —
E. T === systems
Smart Smartphones Tablets B
Devices -
-- PAN
Smart loT A~ O e
Modules

embedded

chips Actuator

Sensor

Fig. 1. Architecture of dew computing solutions for CPS and IoT

to initially process the corresponding information and control
the actuators and other devices. Sometimes these devices
might include also human user interfaces to enable human
monitoring and controlling.

Edge devices with permanent Internet connection are found
in the middle of the architecture as a bridge between the
lower smart devices and IoT modules, or with the higher layer
edge and cloud servers. They communicate with local area
network (LAN) or radio area network (RAN) to the lower
layer, including 3G, 4G and related technologies. Higher speed
versions of LAN and RAN can be used to communicate to the
higher layer.

Edge and cloud servers are the basis of the fourth and fifth
layer correspondingly. The communication between them is
realized via wide area network (WAN) high-speed technolo-
gies.

IV. DISCUSSION

Merging the virtual world with nearby IoT physical devices
gives anyone with a mobile device and the appropriate autho-
rization the power to monitor or control anything [41].

A. Application domains

The new engineering solution defined within dew computing
is to develop solutions that can work as a networked device,
but at the same time, can overcome specific limitations, such as
Internet provision, or limited Big Data capabilities of devices
that have energy resource limitations (small battery) or other
intrinsic limitations of today’s computing system architectures
and software design practices.

The main industrial sectors addressed by the CPS and IoT
implementing the dew computing concept include:

o Autonomous systems, including cars, factory robots, and

other similar machines, devices and systems that can
interact with the environment and still be self-operated,

e Biomedical and healthcare systems, such as remote real-
time monitoring and healthcare provision by wearable
sensors, interacting with caregivers, patients and doctors;
and various brain-machine interfaces, including therapeu-
tic and entertainment robotics, orthotics, exoskeletons,
and prosthetics that allow seamless integration of sensing,
computing, and motor control functions for humans and
animals;

e Air transportation systems, including drones and larger
flying objects to achieve higher capacity, greater safety,
more efficiency, operated autonomously or by a remote
monitoring, management and control as a substitute of
pilots,

o Traffic control and intelligent transportation, safety and
defense systems, based on distributed surveillance sys-
tems, telepresence, remote monitoring agents, and con-
trolling devices,

o Assisted living systems, integrating environmental surveil-
lance systems, controlling the heating, ventilation, au-
tomation, cooling, lighting, watering, in an energy effi-
cient manner,

e Resource and critical infrastructure monitoring and con-
trol, providing efficient use of electrical energy, water,
and communication systems,

o Environment management including systems for energy
conservation, remote monitoring, pollution and environ-
ment control and safety,

o Personal assistive devices, including navigation, environ-
ment status, online learning supported by autonomous
learning tutors, etc.

e Smart manufacturing, including robotics and optimizing
productivity in manufacturing the goods and service
delivery, in the context of Industry 4.0,

o Emergency response, detecting and handling the threats
and obstacles against public safety, sensing and deal-
ing with human-related, technology-related and natural
disasters by a network of sensors, and protecting the
environment and available infrastructures.

These CPS and IoT devices are highly coupled systems
which may integrate complex modularity principles by:

« computing multifunctional elements often by implement-
ing the interdisciplinary big data concept and parallel
processing,

« controlling the physical environment by sensing systems,
controllers via feedback loops at different time and length
scales,

e processing noisy signals to extract necessary features out
of the noise,

« cnabling fault-tolerance and resilience methods to resist
various environment obstacles and provide high reliability
and quality of service.

The main technological improvements are enlisted in Ta-
ble L.

TABLE I
TECHNOLOGY BENEFITS OF IMPLEMENTING THE DEW COMPUTING
CONCEPT FOR CPS AND IOT SOLUTIONS

Benefit Description

Energy effi- Distributing the processing and data storage closer to

ciency the source consumes less energy

Autonomy Each particular IoT device and end-user CPS can work
autonomously based on its own resources

Independence Each particular IoT device and end-user CPS can work
independently of the surroundings and other systems

Collaboration Each particular IoT device and end-user CPS can work

collaboratively with other systems, if there is a need to
exchange information

Interoperability Each particular IoT device and end-user CPS has the
ability to work with other systems and exchange infor-
mation among devices on the same layer and to other
layers

Elasticity The solution can scale based on the workload, includ-
ing other CPS and IoT devices or excluding them
Resilience The solution has the ability to recover from or adjust

easily to unexpected change, such as power outage,
Internet unavailability, various nearby EMC bursts, etc.

B. Comparison of the architectural approaches

A software-oriented architecture [1] aims at isolating the de-
signers and software developers at different stages of analyzing
a single CPS, without analyzing a CPSoS as a complex system
that contains a multiple numbers of CSP and IoT devices.

The communication approach [15] (fog computing) to the
computing architecture extracts the need of the industry to
provide a virtualized distributed network, and analyzes the net-
work management as a primary feature to provide applications
to the end-user device.

A hybrid cross architectural layer [42] is defined as dew-
fog-cloud stack for future data-driven CPS. Dew computing
is considered to bring intelligence to the edge of the network
and provide decisions keeping a centralized control by cloud
computing. This approach combines both IoT and dew-edge
devices into one layer, opposite to our approach to classify
them according to the complexity of tasks they perform and
computing features they provide.

Mahmud et al. [43] define computational domains to com-
pare different computing approaches in post-cloud architec-
tures, based on a location where the computation is performed.
They categorize the following cloud, fog, edge, mobile cloud,
and mobile edge computing, without deeper addressing of the
features of designed applications. In this context, they do not
differ between the edge and dew computing, and the difference
between edge and mobile edge computing is in the use of
cloud servers for mobile edge computing, opposite to other
researchers that define mobile edge computing as a special
case of the edge computing, when a mobile operator network
is used [44].

At the extreme end, some researchers [43] define cloudlets
as micro-cloud special fog computing node located at the
middle of fog computing hierarchy. This is opposite to the
cloudlet approach [13] where cloudlets are a different post-
cloud concept provided by Internet providers, without fog
computing, and to the understanding of edge computing [45]

as a unified framework of cloudlets and fog computing, based
on the network provider to be a mobile operator or Internet
provider, an idea mostly arising by [44]. A nice comparison
of fog, mobile edge computing and cloudlets are reported in
[46], [47], [32].

Fog computing is sometimes defined as a superset of all
other architectures, involving core networking in between the
edge and cloud computing [43], as they analyze edge and
cloud computing only as locations where the computing is
performed, without details on the complexity of performed
tasks, like the approach used in this paper.

A transparent computing-based IoT architecture [48] defines
an architecture with five layers: end-user, edge server, core net-
work, cloud and management and interface layer, categorized
by data processing and service provisioning flow, where the
end-user layer is composed of various IoT devices, besides the
human user-operated smart systems, including smartwatches,
smartphones etc. Our approach clearly differs between these
smart devices and [oT sensors and actuators as separate layers
due to the processing complexity and features they execute.

Hierarchical architecture of fog computing [49] defines
only three basic layers as cloud, fog and terminal layers,
mostly based on fog computing operated by mobile operators
between the terminal devices that include IoT and cloud
servers. This approach does not include architectures, where
mobile operators are not part of the game, that is when the
Internet providers establish the communication link between
the IoT devices, nearby smaller servers (cloudlets) and cloud
data centers.

Cristescu et al. [50] define three basic architectural layers
to be the application layer with cloud computing provided
services, network layer with edge networking, and fog com-
puting gateways, and perception layer using edge devices, mist
and dew computing layers. Their definition of dew computing
relates to a layer where nodes and lines emerge and disappear
according to environmental changes and takes over the mist
computing layer tasks at the ground level, implying lowest
processing and storage resources. This approach defines mist
and dew just as a layer found on the ground base close to the
end-user devices, which can be categorized more generally as
edge computing, and does not analyze the main dew comput-
ing features of autonomy, independence and collaboration of
IoT and edge devices.

As a summary, the architectural models were analyzed in
the literature according to several criteria:

o functional parts and units [30], [6],
« software complexity layers [1],

e computing layers [25],

e user perspective [23],

« application-oriented perspective [31],
e communication approach [15],

Our approach is based on classifying the computing lay-
ers according to the complexity of performed functions and
location where the computing, storage and communication
capabilities meet the energy and resource availability.

V. CONCLUSION

This paper presents a computing and communication archi-
tecture of applying the dew computing concept in the realiza-
tion of CPS and IoT devices. The lower layer consists of de-
vices that are independent, battery-operated small wearables or
units that can exchange information with nearby smart devices.
The smart devices represent the dew computing layer, as they
can be independent of external systems and the Internet, but
still collaborate with them if there is an available connection.
The essence of this concept is autonomous performance as
small CPS using the information provided form the related
sensing IoT modules and controlling them through actuators.
Sharing and exchanging information with the edge devices and
higher layers allow them to work in a connected world and be
a part of CPSoS.

The meteorological analogy to the cloud is the use of fog,
mist and dew, as the computing comes closer to the source. We
argue to those researchers that consider dew computing layer
only as a computing layer in the proximity of IoT devices, that
the corresponding devices can be considered as edge devices if
they do not provide autonomy, independence and collaboration
features.

This architecture was compared to other related papers, and
basic features that extract the dew computing functionalities
are elaborated. The impact of such a design is high. adding
the autonomy, independence and collaboration features makes
them different from conventional edge computing systems, or
similar mobile edge, fog computing or cloudlet designs.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). 1EEE, 2008, pp. 363-369.

[2] J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of cyber-physical systems,”
in 2011 international conference on wireless communications and signal
processing (WCSP). 1EEE, 2011, pp. 1-6.

[3] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-
physical systems approach. Mit Press, 2016.

[4] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, no. 1, pp. 161-166, 2011.

[5S] H. Zhuge, “Future interconnection environment,” Computer, vol. 38,

no. 4, pp. 27-33, 2005.

V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A survey on concepts, ap-

plications, and challenges in cyber-physical systems.” KSII Transactions

on Internet & Information Systems, vol. 8, no. 12, 2014.

[7] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645-1660, 2013.

[8] K. K. Patel, S. M. Patel er al., “Internet of things-iot: definition,

characteristics, architecture, enabling technologies, application & future

challenges,” International journal of engineering science and computing,

vol. 6, no. 5, 2016.

S. Engell, “Cyber-physical systems of systems—definition and core

research and development areas,” CPSoS, 2014.

T. S. Dillon, H. Zhuge, C. Wu, J. Singh, and E. Chang, “Web-of-things

framework for cyber—physical systems,” Concurrency and Computation:

Practice and Experience, vol. 23, no. 9, pp. 905-923, 2011.

Y. Lu, “Industry 4.0: A survey on technologies, applications and open

research issues,” Journal of Industrial Information Integration, vol. 6,

pp. 1-10, 2017.

Y. Zhou, D. Zhang, and N. Xiong, “Post-cloud computing paradigms:

a survey and comparison,” Tsinghua Science and Technology, vol. 22,

no. 6, pp. 714-732, 2017.

[6

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]
[23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

(31]

[32]

[33]

(34]

(35]

[36]

[37]

M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24-31, 2015.

M. Rabinovich, Z. Xiao, and A. Aggarwal, “Computing on the edge: A
platform for replicating internet applications,” in Web content caching
and distribution. Springer, 2004, pp. 57-77.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13-16.
M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
2009.

A. Bahtovski and M. Guseyv, “Cloudlet challenges,” Procedia Engineer-
ing, vol. 69, pp. 704-711, 2014.

K. Skala, D. Davidovic, E. Afgan, 1. Sovic, and Z. Sojat, “Scalable
distributed computing hierarchy: Cloud, fog and dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 2, no. 1, pp. 16-24, 2015.
Y. Wang, “Definition and categorization of dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1-7, 2016.

R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
the next computing revolution,” in Design Automation Conference.
IEEE, 2010, pp. 731-736.

K.-D. Kim and P. R. Kumar, “Cyber—physical systems: A perspective
at the centennial,” Proceedings of the IEEE, vol. 100, no. Special
Centennial Issue, pp. 1287-1308, 2012.

R. Alur, Principles of cyber-physical systems. MIT Press, 2015.

Y. Liu, Y. Peng, B. Wang, S. Yao, and Z. Liu, “Review on cyber-physical
systems,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp. 27—
40, 2017.

M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering: The Journal of the International Council on Systems
Engineering, vol. 1, no. 4, pp. 267-284, 1998.

J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
letters, vol. 3, pp. 18-23, 2015.

J. Wan, H. Yan, H. Suo, and F. Li, “Advances in cyber-physical systems
research.” KSII Transactions on Internet & Information Systems, vol. 5,
no. 11, 2011.

L. D. Xu and L. Duan, “Big data for cyber physical systems in industry
4.0: A survey,” Enterprise Information Systems, vol. 13, no. 2, pp. 148—
169, 2019.

S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A serverless
real-time data analytics platform for edge computing,” IEEE Internet
Computing, vol. 21, no. 4, pp. 64-71, 2017.

M. Gusev, B. Koteska, M. Kostoska, B. Jakimovski, S. Dustdar, O. Sce-
kic, T. Rausch, S. Nastic, S. Ristov, and T. Fahringer, “A deviceless
edge computing approach for streaming iot applications,” IEEE Internet
Computing, vol. 23, no. 1, pp. 3745, 2019.

Y. Tan, S. Goddard, and L. C. Pérez, “A prototype architecture for cyber-
physical systems,” ACM Sigbed Review, vol. 5, no. 1, p. 26, 2008.

A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet
of things realize its potential,” Computer, vol. 49, no. 8, pp. 112-116,
2016.

J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439449, 2017.

X. Wang, L. T. Yang, X. Xie, J. Jin, and M. J. Deen, “A cloud-
edge computing framework for cyber-physical-social services,” IEEE
Communications Magazine, vol. 55, no. 11, pp. 80-85, 2017.

P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Tamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37-42, 2015.

M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Ne-
mirovsky, “Key ingredients in an iot recipe: Fog computing, cloud
computing, and more fog computing,” in 2014 IEEE 19th International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD). IEEE, 2014, pp. 325-329.

P. P. Ray, “An introduction to dew computing: Definition, concept and
implications,” IEEE Access, vol. 6, pp. 723-737, 2017.

R. Beregi, G. Pedone, and I. Mezgér, “A novel fluid architecture for
cyber-physical production systems,” International Journal of Computer
Integrated Manufacturing, vol. 32, no. 4-5, pp. 340-351, 2019.

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199-210, 2015.

M. Gusev and S. Dustdar, “Going back to the roots—the evolution of
edge computing, an iot perspective,” IEEE Internet Computing, vol. 22,
no. 2, pp. 5-15, 2018.

M. Gusev, “A dew computing solution for iot streaming devices,” in
2017 40th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). 1EEE, 2017,
pp. 387-392.

R. Want, B. N. Schilit, and S. Jenson, “Enabling the internet of things,”
Computer, no. 1, pp. 28-35, 2015.

M. Frincu, “Architecting a hybrid cross layer dew-fog-cloud stack for
future data-driven cyber-physical systems,” in 2017 40th International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). 1EEE, 2017, pp. 399-403.

R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy,
survey and future directions,” in Internet of everything. Springer, 2018,
pp. 103-130.

I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in 2014 Federated Conference on Computer Science
and Information Systems. 1EEE, 2014, pp. 1-8.

M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

G. I. Klas, “Fog computing and mobile edge cloud gain momentum
open fog consortium, etsi mec and cloudlets,” Google Scholar, 2015.
Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for
internet of things: a primer,” Digital Communications and Networks,
vol. 4, no. 2, pp. 77-86, 2018.

J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable
iot architecture based on transparent computing,” IEEE Network, vol. 31,
no. 5, pp. 96-105, 2017.

P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:
architecture, key technologies, applications and open issues,” Journal of
network and computer applications, vol. 98, pp. 27-42, 2017.

G. Cristescu, R. Dobrescu, O. Chenaru, and G. Florea, “Dew: A
new edge computing component for distributed dynamic networks,” in
2019 22nd International Conference on Control Systems and Computer
Science (CSCS). 1EEE, 2019, pp. 547-551.

Post-cloud Computing and Its Varieties

Parimala Thulasiraman*, Yingwei Wang’
*Department of Computer Science
University of Manitoba, Canada
thulasir @cs.umanitoba.ca
School of Mathematical and Computational Sciences
University of Prince Edward Island, Canada
ywang@upei.ca

Abstract—Post-cloud computing is a computing paradigm
appeared to cover a group of new computing paradigms, where
these new computing paradigms are related to cloud computing
and are remedial to cloud computing in the post-cloud computing
era. Post-cloud computing has many varieties, including CDEF,
i.e. Cloudlet, Dew computing, Edge computing, and Fog comput-
ing. Researchers and public need to grasp the essential meaning
of each of these computing models and their differences. In this
paper, we show a typical application for each variety to illustrate
the differences.

Index Terms—Post-cloud computing, Cloud computing,
Cloudlet, Dew computing, Edge computing, Fog computing, Post-
cloud computing applications

I. INTRODUCTION

Th widely acceptance of cloud computing made some peo-
ple believe that cloud computing would be the new paradigm
that replaces traditional on-site computing equipment and IT
departments. While this kind of replacement has been going
on, some new computing paradigms came into existence in
the last few years. Among these new computing paradigms
are cloudlet, dew computing, edge computing, fog computing,
and so on. Such progress can be summarized in the following
way: From cloud to CDEF, where C represents Cloudlet, D
represents Dew computing, E represents Edge computing, and
F represents Fog computing. CDEF starts with C also implies
that these four models all started from Cloud Computing.

The cloudlet model promotes to put small-scale cloud data
centers at locations where they are closer to users [1][2].

Dew computing emphasizes that on-premises computers
provide functionality that is independent of cloud services and
also collaborates with cloud services. Dew computing pro-
motes that all on-premises computer applications get support
from cloud services, if possible. With dew computing, cloud
computing can reach its greatest popularity. Dew computing
is complementary to cloud computing [3][4][5].

Edge computing pushes applications, data, and services
away from central servers (core) to the edge of a network; it is
based on the core-edge topology. Edge computing refers to the
enabling technologies allowing computation to be performed
at the edge of the network, on downstream data on behalf of
cloud services and upstream data on behalf of IoT services
(OIL71E819].

Fog computing is a scenario where a huge number of
heterogeneous devices communicate and potentially cooperate

among them and with the network to perform storage and
processing tasks without the intervention of third-parties. Fog
computing extends cloud computing and services to devices
such as routers, routing switches, multiplexers, and so on
[LOICHI2].

CDEF computing models originated from different back-
ground, proposed to solve different problems, related to differ-
ent disciplines/industries, involved different devices, and have
different methodologies. All these computing models share a
common feature: they all perform computing tasks at devices
that are closer to users [13]. The relationships among CEDF
are similar to the relationships among different programming
languages: although each programming language has full
computing power of a Turing Machine, each language has
its own style, strength, and characteristics. In the similar way,
although the definitions of each of these CDEF computing
models may be expanded to cover wider application areas,
each of these models are more suitable to be used in some
specific areas. From cloud to CDEF, the landscape of post-
cloud computing is more versatile and prosperous.

CDEF is an unofficial, easy-to-remember way to refer to
these computing models. To generalize the development of
these computing models, the concept of post-cloud computing
models was proposed [14][15][16][13][17][18].

In this paper, we would like to discuss the concept of post-
cloud computing and applications of its varieties. The rest of
the paper is organized in the following way: In Section II,
we discuss the concept of post-cloud computing and provide
its definition in a descriptive manner. Section III introduces a
practical commercial application for each variety so that the
differences among these varieties can be demonstrated. Section
IV is the conclusions.

II. PosT-cLOUD COMPUTING

CDEF summarizes the varieties of newly-proposed com-
puting paradigms, but we still need a concept to naturally
describe the common features of these paradigms. Post-cloud
computing can serve this role.

Literally speaking, post-cloud computing is the computing
paradigm appears after the cloud computing era. It may or
may not have a specific technical definition, but it must be
inclusive.

Since post-cloud computing may not have a technical defi-
nition, here we roughly describe post-cloud computing as the
computing paradigms that appear after the cloud computing
era, and that work together with cloud computing. Post-cloud
computing is not a specific computing paradigm; instead, it
covers a few computing models that are related to cloud
computing and remedial to cloud computing in the post-cloud
computing era. Major post-cloud computing varieties include
CDEF, i.e. Cloudlet, Dew computing, Edge computing, and
Fog computing.

Are we still in the cloud computing era or we are already
in the post-cloud computing era? People may have different
opinions on this issue. We believe that if in a stage of
computing the following two conditions hold, this stage of
computing could be called post-cloud computing era:

1) Cloud computing is not dominant.

2) The relative importance of cloud computing is not

increasing.

Cloud computing obtained widely acceptance in the past
decade; its usage was increasing quickly. But we believe that
cloud computing has not dominated the computing world.
With the quick development of Internet of Things, wireless
devices, and artificial intelligence, new computing paradigms
play more and more important roles and the relative impor-
tance of cloud computing is increasing slowly or not increasing
at all. Thus, we believe that post-cloud computing era is
coming or has already come.

III. POST-CLOUD COMPUTING APPLICATIONS

The varieties of post-cloud computing include cloudlet, dew
computing, edge computing, and fog computing. All these
varieties provide some features that cloud computing cannot
provide. They share one common feature: they all perform
computing tasks at devices that are closer to users.

The origins, definitions, and principles of these varieties are
introduced in [13]. In this section, we would like to introduce
a real-world commercial application example for each variety
so that the differences among these varieties can be clearly
demonstrated.

A. cloudlet

Akamai is a major content delivery network (CDN)
provider. It operates a geographically distributed network of
proxy servers and their data centers. Its goal is to provide high
availability and high performance by distributing the service
spatially relative to end-users. Akamai provides cloudlet ser-
vices [19] to its customers. Currently, ten kinds of cloudlets
are available. We just introduce one kind of cloudlets, Request
Control Cloudlet, to illustrate the way it works.

Access control is an important part of managing visitor
access to website or application. In today’s connected world,
having control over who can, or can’t, access web properties
is critical to protecting customer organization’s content and
information. It’s important to ensure customer’s resources
remain available for intended audience and are not hindered
by unwanted traffic that could be driving up costs. Often

times these access control policy changes need to be made
quickly and frequently creating a challenge to customer web
operations.

Suppose a customer is operating a website through Aka-
mai’s CDN. This customer also uses Akamai’s Request Con-
trol Cloudlet. The customer may use the control panel to create
some rules. These rules could specify that requests from a
specific CIDR, a specific continent, or a specific country will
be given / or not given access. If this kind of request control is
provided by the data center, the latency would be longer and
load of the server and the network would be much higher. The
cloudlet is running in a edge device in the CDN called Akamai
Intelligent Platform; this device is geographically closer to the
Web client, but is not in the cloud server where the website
is running. The above feature is a key feature of cloudlet
paradigm.

B. Dew Computing

We use a well-known application, Dropbox [20], to illustrate
dew computing. Dropbox works in the following ways: when
the local host is online, the local copy of files are synchronized
with the cloud copy of the files automatically; when the local
host is offline, the local copy can still be used in whatever way
the user wants to use them; when the local host get back online
again later, the synchronization will be performed without any
human intervention.

The above example is only one category of dew computing:
Storage as Dew (SaD). Other categories of dew computing can
be found in [5]. Although one example cannot reflect the the
whole landscape of dew computing, it showed the two major
features of dew computing: independent and collaboration.

C. Edge Computing

Amazon Web Services (AWS) is a major cloud computing
provider. Besides the well-known service Elastic Compute
Cloud (EC2), Lambda@Edge [21] is a feature of another AWS
Service: Amazon CloudFront. Lambda@Edge provides edge
computing service.

Lambda@Edge lets you run code closer to users of your
application, which improves performance and reduces latency.
With Lambda@Edge, you don’t have to provision or manage
infrastructure in multiple locations around the world. You pay
only for the compute time you consume - there is no charge
when your code is not running.

With Lambda@Edge, you can enrich your web applica-
tions by making them globally distributed and improving
their performance — all with zero server administration.
Lambda@Edge runs your code in response to events generated
by the Amazon CloudFront content delivery network (CDN).
Just upload your code to AWS Lambda, which takes care
of everything required to run and scale your code with high
availability at an AWS location closest to your end user.

D. Fog Computing

SONM [22] is a decentralized fog computing platform. It
provides cloud services based on distributed customer level

hardware including PCs, mining equipment, and servers. You
can either rent out your hardware or use someone’s computing
power for your needs.

This example illustrates that fog computing is different from
cloud computing. In cloud computing, computing power exists
in data centers; in fog computing, computing power exists
everywhere. Fog computing provides some incentive to those
who provide computing power. Such a financial model was
proposed together with the fog computing concept.

IV. CONCLUSION

In this paper, we discussed the concept of post-cloud com-
puting, explored typical applications of the varieties of post-
cloud computing: cloudlet, dew computing, edge computing,
and fog computing. From these commercially available appli-
cations, we can see that that these varieties are quite different.
They have only one belief in common: cloud computing
should not be the only form of computing. The essential
differences among them are not in their definitions that claim
their coverage because definitions can be easily updated, ex-
panded, and interpreted in different ways. The essential values
of these computing models exist in their built-in principles,
architectures, styles, and philosophy. Similar to programming
languages, although each programming language has full
computing power of a Turing Machine, each language has its
own style, strength, and characteristics. People won’t accept
the idea that using one programming language to replace
all other programming languages. These computing models
will provide different frameworks, paradigms, guidelines, and
architectures to researchers and developers in the post-cloud
era.

REFERENCES
[1] S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, and L. Qi,
“CLOUDLET: towards mapreduce implementation on virtual machines,”
in Proceedings of the 18th ACM International Symposium on
High Performance Distributed Computing, HPDC 2009, Garching,
Germany, June 11-13, 2009, 2009, pp. 65-66. [Online]. Available:
http://doi.acm.org/10.1145/1551609.1551624
M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14-23, Oct 2009.
Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199-210, 2015.
K. Skala, D. Davidovic, E. Afgan, 1. Sovic, and Z. Sojat, “Scalable
distributed computing hierarchy: Cloud, fog and dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 2, no. 1, pp. 16-24, 2015.
Yingwei Wang, “Definition and categorization of dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1-7, 2016.
Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 421-434, Aug. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2829988.2787505
P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Tamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 3742, Sep. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2831347.2831354
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, Oct 2016.
M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, Jan 2017.

[2]

(3]
(4]

[3]
(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]
(18]

[19]
[20]

(21]

[22]

Flavio Bonomi. (2011, Sept.) Connected vehicles, the internet of
things, and fog computing. [Online]. Available: https://www.sigmobile.
org/mobicom/2011/vanet2011/program.html

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13-16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog:
Towards a comprehensive definition of fog computing,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27-32, Oct. 2014. [Online].
Available: http://doi.acm.org/10.1145/2677046.2677052

Y. Pan, P. Thulasiraman, and Y. Wang, “Overview of Cloudlet, Fog
Computing, Edge Computing, and Dew Computing,” in Proceedings of
The 3rd International Workshop on Dew Computing, Toronto, Canada,
10 2018, pp. 20-23.

D. Gardner, “Get ready for the post-cloud world,” Datamation,
07 2017, https://www.datamation.com/cloud-computing/get-ready-for-
the-post-cloud-world.html.

Y.-Z. Zhou, D. Zhang, and N. Xiong, “Post-cloud computing paradigms:
a survey and comparison,” Tsinghua Science and Technology, vol. 22,
no. 6, pp. 714-732, 12 2017.

Y.-Z. Zhou and D. Zhang, “Near-end cloud computing: Opportunities
and challenges in the post-cloud computing era,” Chinese Journal of
Computers, vol. 41, no. 25, pp. 1-24, 2018, online publishing, in
Chinese, abstract in English.

Y. Wang, “Post-cloud computing models: from cloud to cdef,” Dew
Computing Research, 11 2018, preprint.

——, “What is post-cloud computing?” ResearchGate,
preprint.

Akamai, “Akamai cloudlets,” online, https://cloudlets.akamai.com/.
Dropbox. (2014, February) Dropbox. [Online]. Available: https:
/Iwww.dropbox.com/

Amazon, “Lambda@edge,” online, https://aws.amazon.com/lambda/
edge/.

SONM, “Decentralized fog computing platform,” online, https://sonm.
com/.

11 2018,

Decentralized Hardware Ownership Control: Dew
Computing with Blockchain

Yingwei Wang
School of Mathematical and Computational Sciences
University of Prince Edward Island
Charlottetown, Canada
Email: ywang@upei.ca

Abstract—In this paper, a decentralized hardware ownership
control system and its implementation were proposed. Such a
system could allow different manufactures/vendors and their
customers to control the ownership of their products. Such system
could discourage the happening of theft and ensure the ownership
of customers. More importantly, this paper points out that dew
computing can work together with blockchains in the similar
way as it works with cloud services.

Index Terms—Dew computing; Blockchain; Software in Dew;
SiD; Cloud services, Cloud Servers.

I. INTRODUCTION

The great success and widely acceptance of cloud comput-
ing gave people an impression that cloud computing could
dominate the computing world. In the last few years, other
forms of computing models appeared and it is clear now
that while cloud computing still plays a major role, other
forms of computing models also play significant roles in
the computing world. These forms of computing models
include Cloudlet [1][2], Dew computing [3][4], Edge com-
puting [5][6], and Fog computing [7][8]. For convenience,
these forms of computing models are referred to as CDEF
models [9][10].

In this paper, we concentrate on one category of dew
computing: Software in Dew [11]. We discuss one of SiD's
applications: hardware ownership control; we show SiD can
work not only with cloud servers, but also with blockchains.

The rest of this paper is organized as follows: Section II
introduces two concepts: the computing model SiD and the
application hardware ownership control; Section III compares
cloud services and blockchains to demonstrate that dew com-
puting can work with both of them; Section IV describes
the proposed blockchain which is able to provide hardware
ownership control; Section V gives conclusions.

II. SOFTWARE IN DEW AND HARDWARE OWNERSHIP
CONTROL

According to [1], Software in Dew (SiD) is a dew comput-
ing category where a user's ownership to a piece of software
is not only reflected by the software's existence on the user's
on-premises computer, but also reflected by the ownership and
settings information recorded in a cloud service. SiD should
also make sure the user can re-download this software if
necessary.

Marjan Gusev

Faculty of Information Sciences and Computer Engineering

Ss. Cyril and Methodius University
Skopje, Macedonia
Email: marjan.gushev@finki.ukim.mk

SiD is the opposite concept of Software as a Service (SaaS)
in cloud computing. SiD promotes software local installa-
tion/operation, but it is not the same with the old-fashioned
software local installation/operation; the difference is that SiD
has cloud support and collaboration. Such cloud support and
collaboration include download support, software ownership
record, and so on.

In SiD, records in the cloud server guarantee the software
ownership of a user. Even though the software's local copy
is lost, or the user changed his/her computer, he/she still
keeps the ownership of the software, and the software can be
downloaded and installed in the local computer if necessary.

It is apparent that SiD is able to guarantee a user's software
ownership, but it is not very straightforward that SiD is also
able to control a user's hardware ownership.

One kind of software is special: the system software of
hardware. Here hardware include computers, vehicles, cam-
eras, and any other devices that are controlled by software.
The ownership of the system software in hardware can also
be maintained using the SiD model. To make sure the system
software was used in accordance of its license, the IDs of the
installed hardware might also be recorded in the cloud.

The owner of a piece of system software that has been
installed in a piece of hardware could be considered as the
owner of this piece of hardware; when another user wants to
install/activate the system software on this piece of hardware,
it will be rejected due to ownership conflict. This is the logic
of hardware ownership control.

Hardware ownership can be controlled in two different
levels. In the first level, hardware ownership is recorded in
a proper place and it won't be changed without the owner's
agreement; this ownership usually does not influence the usage
of this hardware. We may call this level hardware ownership
recording. In the second level, not only the ownership cannot
be altered without the agreement of the owner, the hardware
cannot be properly used when it does not have the owner's
agreement; only owner can use the hardware; other people
cannot not use this hardware because he/she is not able to
control the system software of this hardware. The owner
can revoke the usability of this hardware. We may call this
mechanism hardware ownership control.

Such mechanism has been used in managing the ownership

of some categories of hardware. Some categories of hardware
do not use system software to control its operation. For this
category of hardware, only ownership recording is possible.
For example, real estate properties and vehicles are areas
where ownership recording was used. This category of hard-
ware ownership control is limited: Thieves cannot obtain the
ownership of a vehicle, but he can still drive the vehicle.

If a piece of hardware uses system software to control its
operation, the second level ownership control can be used. For
example, the ownership of some smartphones are controlled
using this model. When ownership control is implemented,
it discourages theft and makes the hardware more secure.
This model can be introduced to new areas. For example, if
whenever a vehicle is started, it needs permission from the
cloud, the theft won't able to drive the car without the consent
of the owner.

From the above discussions, we can see that SiD can be used
to implement hardware ownership control. Dew computing and
cloud computing are tightly inter-connected. SiD or any other
category of dew computing never works by itself. It always
involves cloud computing. From cloud point of view, such
hardware ownership control model could be called Hardware
Ownership Control as a Service or something similar, but no
such concept exists at this time.

III. CLOUD VS. BLOCKCHAIN

Hardware Ownership Control provided through SiD works
well, but it has a problem: it relies on a specific cloud server,
and the cloud server belongs to a specific company. Due to
privacy, reliability, and other concerns, some users are not
satisfied with such arrangements.

Because blockchain [12][13] is a decentralized paradigm,
we explore the possibility that to implement hardware owner-
ship control through a blockchain instead of a cloud server.

Let us do a comparison between a cloud server and a
blockchain:

o From network topology view point, a cloud server is
centralized whereas a blockchain is decentralized.

o From a user's view point, both a cloud server and a
blockchain can provide similar services.

We know that dew computing relies on cloud computing;
all dew computing applications involve some kind of cloud
services. We want to ask a question: is it possible to let
a blockchain to play the roles of a cloud service in dew
computing applications?

Yes, this is quite possible. From a user's view point, a
blockchain is a special kind of cloud service. All the con-
siderations in dew computing in terms of a cloud service
could be applied to blockchains. Of course, the architecture
of blockchains should be altered to suit such dew computing
requirements.

IV. HARDWARE OWNERSHIP CONTROL WITH
BLOCKCHAIN

Hardware ownership control can be implemented using SiD
model with support from a blockchain. In this section, we

discuss a few key considerations in this proposed blockchain.
A Proof-of-Concept model blockchain to implement this ap-
plication is under development.

A. Crypto-currency

Blockchains are traditionally related to crypto-
currencies [14]. The proposed blockchain may or may
not have a crypto-currency component. Even a crypto-
currency is included, such a crypto-currency is not the major
goal of this blockchain; it may serve as incentive to support
the operation of the hardware ownership control functions.

B. Transactions

In the proposed blockchain, besides currency-related trans-
actions, ownership-related transactions could be added in
a new block and the new block will be appended to the
blockchain if some conditions are met. We propose two
different methods to set up ownership-related transactions.

In the first method, the following two types of transactions
should be included:

e Ownership Initial Claim

e Ownership Transfer
In this method, the ownership of a piece of hardware will be
initially claimed by an owner; from then on, its ownership will
be transfered from one owner to another owner.

In the second method, the following two types of transac-
tions should be included:

e Ownership Claim

e Ownership Release

In this method, the ownership of a piece of hardware can
be claimed and released by different owners at different time.

Comparing these two methods, the first method ensures that
the hardware is always owned by a user, whereas in the second
method, its ownership has to be taken care of by human hands
between two owners have their own ownership.

The first method is good at its consistency, and the second
method is good at its flexibility. For now, we take the first
method and discuss its implementation considerations.

C. Ownership Initial Claims

Ownership initial claim needs carefully considerations. Sup-
pose a piece of hardware was sold to a user; how could this
user claim the ownership of this piece of hardware?

The simplest method is to let the user to claim ownership
freely. The user may establish an ownership initial claim
transaction with the serial number or ID of this piece of
hardware. The problem of this method is that fake ownership
could be established. Because no verification is needed, anyone
can claim the ownership of a piece of hardware with specific
serial number or ID, as long as it has not been claimed yet.

The second method is to introduce ownership verification
by a manufacture or a vendor. In this method, the manufacture
or the vendor produces a verification code for each piece of
hardware and provides this code to the customer. The customer
sends the serial number/ID and the verification code to the
blockchain. The blockchain then forwards such information to

the manufacture/vendor get the ownership verified. If verified,
the ownership initial claim transaction could be added to the
blockchain; otherwise the claim will be rejected.

The above-mentioned verification mechanism is widely
used. Its problem is that the manufacture/vendor has to keep
a database of serial number/ID and its verification code; the
manufacture/vendor has to involve in the verification process.

To release manufactures/vendors from the burden of verifi-
cation, we propose a method that verifies ownership but does
not need manufactures/vendors to do that; we call this method
Function-pair Verification.

Inspired by asymmetric cryptography, we prepare a pair of
functions for a manufacture: one is a private function f and the
other is a public function g. These two functions are related
but f cannot be derived from g.

The private function f can be applied upon the serial
number/ID s of a piece of hardware to produce a verification
code v, where v = f{(s).

v is provided to a customer along with the hardware and its
serial number/ID s.

The public function g can be applied upon s and v. It verifies
if v is the valid verification code for s. The public function
g must be complex enough so that the relationship between s
and v cannot be revealed.

Suppose such pair of functions have been chosen by the
manufacture/vendor, they keep function f as a secret and use
f to generate a verification code for each serial number/ID of
a piece of hardware; they provide these serial numbers/IDs
and verification codes to customers; they submit function g to
the blockchain in the form of a callable function or a smart
contract [15]. Whenever a user tries to claim ownership for a
piece of hardware with a serial number/ID and corresponding
verification code, function g will be called; if it is verified this
claim would be accepted by the blockchain; if it is not verified
this claim would be rejected.

Using Function-pair Verification method, manufac-
tures/vendors do not need to keep track of their serial
numbers/IDs and corresponding verification codes; they do
not need to maintain a service to verify ownership; ownership
are verified inside the blockchain with a publicly-available
function.

The detailed mathematical discussions related to the con-
struction of function pair is beyond the scope of this paper.

D. Software Download

The proposed blockchain, which is a decentralized hardware
ownership control system, should be able to support all func-
tions that a centralized hardware ownership control system
is able to provide. Thus, the proposed blockchain should
be able to support software download to verified hardware.
Downloadable software should be published in the blockchain
by the manufacture/vendor in the form of file or a smart
contract.

V. CONCLUSIONS

Computing models are changing and developing rapidly. In
this paper, we demonstrate that dew computing can not only

work with cloud services, but also with blockchains through
an application: hardware ownership control. A blockchain was
proposed to implement this application. Various issues in this
proposed blockchain were discussed.

REFERENCES

S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, and L. Qi, “CLOUDLET:
Towards Mapreduce Implementation on Virtual Machines,” in Proceed-
ings of the 18th ACM International Symposium on High Performance
Distributed Computing, Jun. 2009, pp. 65-66.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-based Cloudlets in Mobile Computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14-23, Oct. 2009.

Yingwei Wang, “Cloud-dew Architecture,” International Journal of
Cloud Computing, vol. 4, no. 3, pp. 199-210, 2015.

K. Skala, D. Davidovic, E. Afgan, I. Sovic, and Z. Sojat, “Scalable
Distributed Computing Hierarchy: Cloud, Fog and Dew Domputing,”
Open Journal of Cloud Computing (OJCC), vol. 2, no. 1, pp. 16-24,
2015.

Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low Latency Geo-distributed Data Analytics,” SIG-
COMM Comput. Commun. Rev., vol. 45, no. 4, pp. 421-434, 2015.

M. Satyanarayanan, “The Emergence of Edge Computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

Flavio Bonomi, “Connected Vehicles, the Internet of Things, and Fog
Computing,” The Eighth ACM International Workshop on Vehicular
Inter-networking (VANET 2011), 2011, Keynote.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its Role in the Internet of Things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, 2012, pp. 13-16.
Yi Pan and Parimala Thulasiraman and Yingwei Wang, “Overview of
Cloudlet, Fog Computing, Edge Computing, and Dew Computing,” in
Proceedings of The 3rd International Workshop on Dew Computing,
Oct. 2018, pp. 20-23.

Yingwei Wang, “Post-cloud Computing Models: from Cloud to CDEF,”
Dew Computing Research, 2018, Nov.4.

, “Definition and Categorization of Dew Computing,” Open Journal
of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1-7, 2016.
Sthuthie Murthy. (2018, May) “Blockchain will do
transactions ~ what the internet did for information”
says IBM CEO. [Online]. Available: https://ambcrypto.com/
blockchain-for-transactions-internet- for-information-ibm-ceo/

Vitalik Buterin. (2013, Dec.) A Next-Generation Smart Contract
and Decentralized Application Platform. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White- Paper#ethereum

Satoshi Nakamoto. (2009, May) Bitcoin: A peer-to-peer electronic cash
system. [Online]. Available: https://bitcoin.org/bitcoin.pdf

K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts
for the Internet of Things,” IEEE Access, vol. 4, pp. 2202-2303, 2016.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12] for

[13]

[14]

[15]

Dew Text Application Development

Srija Srivastava, Sarada Kiranmayee Tadepalliy, Ruppa K.
Thulasiramx, Parimala Thulasiraman
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada
srijas@myumanitoba.ca, tadepask@myumanitoba.ca,
tulsi@cs.umanitoba.ca, thulasir@cs.umanitoba.ca

Abstract—Dew Computing being an extension of client-server archi-
tecture, makes data or website available to the user without an internet
connection, by being independent and still collaborative with the cloud
services. Since, dew computing is in its early stage,the technical imple-
mentation details are not readily available for public use, such as APls.
Considering this, my project aimed to create a set of library functions in
php for one category of dew computing, i.e., Web in Dew (WiD). This
project considers DewText application (proof of concept application) as
the base of development of library functions. The resulting library func-
tions are then used to re-write DewText application. Thus, demonstrating
WiD applications could be written in an easier and simpler manner.

1 INTRODUCTION AND MOTIVATION

Cloud computing offers many beneficial features to the
users and one of it includes data mobility. A user can access
data or website from anywhere if internet connection is
available, but when the internet connection is not available
the user cannot access a website or his own data. These
peculiar situations can be handled by dew computing [1],
where it helps on-premises computer to be independent
yet collaborative with the cloud services. Here, indepen-
dence from cloud means that dew computing will make
a software or data available to the user when there is no
internet connection and collaboration refers to the process
of automatic retrieval /transmission of information to/from
the cloud when internet connection becomes available.

To address the problem stated earlier, a solution, cloud-
dew architecture [2] in dew computing was introduced.
This architecture is an extension of client-server architecture.
Here, two types of servers are maintained namely, cloud
server and dew server. A dew server is a web server that
resides on user’s machine,i.e, on-premises computer and
facilitates similar services as cloud along with synchroniza-
tion between dew server data and cloud server data. In
other words, cloud-dew architecture allows a user to access
website, related data and perform any operation on data,
even if internet connection is not available. And as soon
as the internet connection becomes available, the data gets
synchronized automatically.

14

Cloud Server
And
Datahases

Client
Program

Dew Server Local Database

Local Computer

Fig. 1. Cloud-dew architecture

Depending on the area of application of dew computing
it is categorized as: Web in Dew, Storage in Dew, Database
in Dew, Software in Dew, Platform in Dew, Infrastructure as
Dew, Data in Dew [3]. Web in Dew (WiD) category of dew
computing allows access to web without internet connection
by maintaining a copy of a fraction of World Wide Web on
user’s machine(on-premises computer). The architecture of
WiD is implemented as cloud-dew architecture.

Due to the lack of availability of APIs, when it comes
to the development of WiD applications, one has to start de-
velopment from the scratch which involves complex coding.
Considering it as a motivation, this project involves creation
of a set of library functions in php, in the direction to
re-write DewText application (proof-of-concept application)
using those libraries.

The rest of the paper is organized as follows: Section
2 focuses on background and related works in the WiD
category of dew computing, followed by Section 3, briefly
describing the problem statement. An approach for creation
of library functions is specified in Section 4. Experimental
framework used for the project is explained in Section 5.
Section 6, discusses the application of the library functions
that have been created to re-write DewText application.
The conclusion and future work are presented in Section

7.Section 8 showcases all the codes used in creation of the
APIs.

2 BACKGROUND AND RELATED WORK

Even though dew computing is in its early stage and is
an emerging technology, the cloud-dew architecture was
proposed as a solution for accessing web without inter-
net connection. The cloud-dew architecture makes personal
data stored in the cloud available for user all the time
and facilitates web surfing without an internet connection.
Cloud-dew architecture is an implementation of Web in
Dew category of dew computing.

The WiD provides a better software delivery model by
integrating SaaS (Software as a Service) and SaaP (Software
as a Product) [4]. SaaS saves the data on central server and
requires internet connection to access the website/software
or data.Whereas,SaaP enables user to save data in the local
machine and access the software without any dependency
on internet connection. Since WiD integrates SaaS and SaaP,
making the data, website or software to be available with or
without internet connection.

As a proof of concept application, DewText was devel-
oped to demonstrate the functionality facilitated by cloud-
dew architecture. It is a light weight, open-source applica-
tion which can be expanded easily. It showcases the key fea-
ture of independence by making DewText website accessible
without internet connection.With the help of dew server
residing in the local machine, a user can make changes to
a file, add a new file or delete an existing file in DewText
application. All these operations performed on the data are
stored in the local machine (on-premises computer). Follow-
ing this, DewText application synchronizes the data stored
on the local machine with the data stored in cloud as soon
as internet connection becomes available, thus, illustrating
collaborative feature of cloud-dew architecture.

stare

nfarmation of
fles tobe

deleted

Mahe changes

aucording tothe Files sychronized
timestampofdata | —#{ onlocal computer

from doud and and doud

loza| computer

Collectall data from cloud
and il he data rom local maching to
Be synehronized

Perform action

Store
nfarmation of
fles tobe
aded

Fig. 2. DewText Synchronization Flow

When internet connection is available, user can access
the DewText website deployed on the cloud as well as
can access dewsite (website deployed on the dew server).
Whereas when there is no internet connection, a user can
access only the DewText dewsite and can perform any
operations mentioned earlier. The changes made to any data
will be stored on the local machine which upon internet
availability, will get synchronized with the cloud data. As
shown in Figure 2 and 3, Dewtext application collaborates

15

Oeltel he
flesand
reled

fameian

Reteel Aidalrefles
tzfon N OrEns
doud anpity

Dat rstved

(e from lud

Fig. 3. DewText Restoration Flow

with the cloud by either synchronizing the data between
cloud and local based on time-stamp or by restoring all the
data stored in the cloud into the local machine.

3 SPECIFIC PROBLEM STATEMENT

Web in Dew (WiD) category of dew computing allows access
to web without internet connection by maintaining a copy of
a fraction of World Wide Web on local machine(on-premises
computer). The architecture of WiD is implemented as
cloud-dew architecture. Due to the lack of availability of
APIs, when it comes to the development of WiD applica-
tions, one has to start development from the scratch which
involves complex code. Considering it as a motivation, this
project involves creation of a set of library functions in php,
in the direction to re-write DewText application (proof-of-
concept application) using those libraries.

4 SOLUTION STRATEGY AND IMPLEMENTATION

To make the development of Web in Dew applications easy
and simple, this project concentrates on building Web in
Dew API (library functions). The project considered Dew-
Text as the base application to propose key components of
Web in Dew category of dew computing as library functions,
which is built in php programming language. The key com-
ponents of DewText application can be included as below:

Change in file: To maintain information regarding the
type of changes made in the file. It may include changes in
existing file, creation of a new file or deletion of an existing
file.

Prepare add and delete content: To prepare a list of files
that should be added or deleted, list of existing files in which
some changes are made and the list of file content that are
to be added with respect to the files to be newly added or
changes made in the existing files.

Delete on synchronization: To delete all files that are
queued for deletion upon synchronization between cloud
and local data.

Add on synchronization: To add new files that are
queued for addition upon synchronization and update ex-
isting files if any changes are made in it.

Add files on restoration: To add all the files on local
machine(on-premises computer) downloaded from cloud in
the process of restoring all the data from cloud.

Delete files on restoration: To delete all the files stored
on local machine(on-premises computer) before retrieving
the data from cloud which has been added to it.

Clear file content on restoration: To delete the content
of files specified upon restoration. These files are used to
store all the file’s name that are currently stored on local
machine(on-premises computer).

Get lines in array: To store each line of a file in an array
(used multiple times in DewText), which would then be
used for further processing such as addition of new file or
changing the existing file.

Get time: To get the timestamp stored in the log file
for a particular file that is to be added or deleted. The log
file in DewText maintains the information of any operation
performed on a file such as the timestamp of the activity,
type of changes made to that file (new/delete) and name of
the file.

Get flag: To get the flag or the type of changes associated
with the file is maintained in the log file. Its value could be
either "new” or “del”. The value "new” is associated with a
file when any change is made in it or if a new file is created.
Whereas, the value “del” is associated with the file which
has to be deleted.

Get file name: To get the name of a file from the log file.

5 EXPERIMENTAL FRAMEWORK

The proposed key components of DewText was created
as library functions in php programming language using
NetBeans IDE [5]. XAMPP [6] was installed as dew server
on local machine(on-premises computer) and Composer
package manager was used to manage the library created.
DewText applications code can be obtained from [7].

6 RESULTS

Library functions for the proposed key components of Dew-
Text were developed, which were then tested separately
for its functionality independently. Later, these functions
were used to re-write DewText application (dewsite) to test
whether the application performed similar to the original
application. It was found that the DewText application
worked the same when it was re-written using those li-
braries.

6.1 Experimental testbed or environment

The proposed key components of DewText was created
as library functions in php programming language using
NetBeans IDE. XAMPP was installed as dew server on
local machine(on-premises computer) and Composer pack-
age manager was used to manage the library created. The
libraries were created and tested on the machine having
processor specification as AMD A12 RADEON R7, 12 COM-
PUTE CORES 4C+8G,2.70GHz, 8 GB RAM and 64-bit oper-
ating system.

6.2 Detailed Results and their analysis

The re-written DewText application was tested to ensure
the synchronization and restoration processes are working
properly. To test synchronization process, first I discon-
nected the internet and then accessed the dewsite. In the
dewsite I performed the following activities; added a file,
deleted a file and made changes to an existing file. All the
details of the changes along with its timestamp were stored
in the log file. Later, I connected my machine to internet,
and found that all the changes were synchronized with the
cloud as soon as the internet connection was made available.

3

Secondly, during the availability of internet connection, I
accessed the dewsite and performed all the activities and
noted that all the data got synchronized with the cloud
simultaneously.

To test the restoration process, during the availability of
internet connection, I accessed the DewText website and
clicked the restore option. On selecting that option, all
the data stored on local machine were deleted and then
all the data stored in cloud were retrieved and saved on
local machine. Later this data were available and accessible
through dewsite when internet was disconnected.

7 CONCLUSIONS AND FUTURE WORK

The proposed key components of DewText application were
developed as library functions in php using composer pack-
age manager. These library functions reduced the code of
DewText when it was re-written using them. Thus, demon-
strating the development of applications similar to DewText
can be easier and simpler.

Since, this project mainly concentrated on developing
library functions for key components of DewText, the way
it handles all the data is different. But considering these key
components, it can be extended to handle any type of data
with proper exception handling. This can also be extended
to manage database content. Thus, managing all types of
data in a more generic manner by increasing its utility.

ACKNOWLEDGEMENTS

The last two authors acknowledge Natural Sciences and En-
gineering Research Council (NSERC) Canada for partial fi-
nancial support for this research through Discovery Grants.
The first author acknowledge the International Graduate
Student Scholarship from Faculty of Graduate Studies, Uni-
versity of Manitoba.

REFERENCES

[1] Partha Pratim Ray. An introduction to dew computing: Definition,
concept and implications. IEEE Access, 6:723-737, 2018.

[2] Yingwei Wang. Cloud-dew architecture. IJCC, 4:199-210, 2015.

[3] Yingwei Wang. Definition and categorization of dew computing.
Open Journal of Cloud Computing (OJCC), 3(1):1-7, 2016.

[4] Yingwei Wang and David Leblanc. Integrating saas and saap with
dew computing. pages 590-594, 10 2016.

[5] Netbeans ide 8.0.2 download. https://netbeans.org/downloads/8.
0.2/. (Accessed on 04/19/2019).

[6] Xampp apache + mariadb + php + perl. https://www.
apachefriends.org/index.html. (Accessed on 04/19/2019).

[7] Dewtext: A proof-of-concept dew computing application.
http:/ /www.dewcomputing.org/index.php/2018/11/22/
dewtext-a-proof-of-concept-dew-computing-application/.
(Accessed on 04/19/2019).

8 CODES
8.1 index.php

This file will help the user to create a new text file
for the “"Notebook”.It also provides an interface to dis-
play,delete,synchronize and restore files.

<!DOCTYPE html>

<html>

16

<head>

<meta charset="utf-8" />
<title>Dew Text</title>
<style type="text/css">
.titled
text-align:
font-size:

center;
36px;

}

.button {
background-color:
border: none;
color: white;
padding: 15px 32px;
text-align: center;
text—-decoration: none;
display: inline-block;
font-size: 22px;
width:80%;

dpx 2px;

#555555;

margin:
}
.del{
background-color:
width:15%;

#FF0000;

}

.new {
background-color: #527a7a;

}

.syn{
background-color:
width:15%;
padding: 17px 2px;
font-size: 20px;

#00BFFF;

}
</style>

</head>
<body>

<diwv>
<hl class="title">Notebook</hl>
</div>
<?php
$index = fopen ("log/index",
while (! feof ($index))
{

"r");

Sline = substr (fgets($index),0,
//remove \n at the end
1if(Sline!="")
{
print ("<button class=\"button\"
onclick=\"showfun (’$line’)\">
$line</button>
<button class=\"button del\"
onclick=\"del (' $line’)\">Delete
</button>

");
}
}
fclose ($index) ;
print ("<button class=\"button new\
"onclick=\"showfun ('new’)\"> New
</button>
<button class=\"button syn\"

-1);

17

7>

onclick=\"synchronize () \">
synchronize
</button>
");

print ("<button class=\"button syn\

"onclick=\"restore ()\"> Restore
</button>");

<form id="form" method="get"
action="edit .php">

<input id="message"

name="title" type="hidden"/>

</form>
<form id="form2" method="post"
action="delete.php">

<input id="message2"

name="title" type="hidden"/>

</form>
<form id="form3" method="post"

target="frame"

action=

"http://ec2-18-224-251-211.us—-east
-2 .compute.amazonaws.com

/dewText /sendLog.php">

</form>

<form id=

"formd4" method="post"

target="frame"

action="http://ec2-18-224-251-211.us—east-2.
compute.amazonaws.com/dewText/sendAll.php">
</form>

<script>

function showfun(title)

{
var message =
document .getElementById ("message");
message.value = title;
var form =
document .getElementById ("form") ;
form.submit () ;

function del (t)

{
var message2 =
document .getElementById ("message2");
message2.value = t;
var form2 =
document .getElementById ("form2") ;
form2.submit () ;

function synchronize ()

{
var form3 =
document .getElementById("form3");
form3.submit () ;
//location.reload () ;
//style="display: none"

function restore()

{

var formd =
document .getElementById ("formd") ;
formd.submit () ;

var auto =
setTimeout (function ()

{ synchronize(); }, 10000);
</script>
<iframe name=
"frame" style="display: none"></iframe>
</body>
</html>

8.2 delete.php

delete.php will help in deleting the contents after attaining
the path of the file from the user that should be deleted
and also it will delete its index value from the log file in
index.php.

<?php
require_once __DIR___
// Autoload files using Composer autoload
use lib\DewTextLib;
Stitle = $_POST["title"];
//get file path
Spath = "text/".Stitle.".txt";
if (file_exists ($path))
{

//delete file

unlink ($path);

//remove from index

Scontents = file_get_contents ("log/index");
Scontents = str_replace ($title."\n",

'’ , Scontents);
file_put_contents ("log/index", S$contents);
DewTextLib::changeInFile ($title, "del");

header ("Location:
?>

index.php") ;

8.3 edit.php

Edit.php will help in editing the title and the content of the
file.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>Page Title</title>
<style type="text/css">
textarea.title {
width: 100%;
height:30px;

" /vendor/autoload.php’;

margin-bottom: 1%;
font-size:22px;

}

textarea.text {
height:500px;
width:100%;
font-size:18px;

}

.button {
background-color: #555555;
border: none;
color: white;
padding: 15px 32px;
text-align: center;
text—-decoration: none;
display: inline-block;
font-size: 22px;
margin: 4px 2px;

}

</style>

</head>
<body>
<?php

Stitle = $S_GET["title"];

Scontent = "";

Struetitle = "Unnamed";

if (Stitle != "new")

{

Spath = "text/".Stitle.".txt";
Scontent =

18

file_get_contents ($path);

//remove .txt
Struetitle =

rtrim(Stitle, ' .txt’);

Scontent = Jjson_decode (Scontent) ;

print ("<textarea class=

\"title\" id=\"title\" row=
\"I\">Struetitle</textarea>

<textarea class=

\"text\" id=
\"content\">".S$content."</textarea>

")

7>
<button class=
"button" onclick="save () "> Save </button>

<form id=
"form" method="post" action="save.php">
<input id=
"p_title" name="title" type="hidden">
<input id=
"p_content" name="content" type="hidden">
</form>
<script>
function save()
{
var title =
document .getElementById("title") .value;
var content =

document .getElementById ("content") .valwe;

var form =
document .getElementById("form") ;

var p_title =

document .getElementById ("p_title");
var p_content =

document .getElementById ("p_content");

p_title.value = title;
p_content.value = content;

form.submit () ;
}

</script>

</body>

</html>

8.4 save.php

Save.php will update the log file with the new file’s title and
the content of it in the index.php

<?php
require_once __DIR___
" /vendor/autoload.php’;
// Autoload files using Composer autoload
use lib\DewTextLib;

Stitle = $_POST["title"];

Scontent = $_POST["content"];
//echo $content."
";

Scontent = Jjson_encode ($Scontent);
//echo $content."
";

//save file

Spath = "text/".S$title.".txt";
file_put_contents ($path, Scontent) ;

//check 1f $path exist in index
$file = fopen("log/index","r+");
Snew = true;
while (! feof (S$Sfile))
{
$line = substr(fgets($file), 0,
//remove \n at the end
if($line == S$title)
{

-1);

Snew=false;
break;

}

if (Snew)

{
fwrite (S$Sfile, Stitle);
fwrite ($Sfile, "\n");

}

fclose ($file);

DewTextLib::changeInFile ($title, "new");

header ("Location: index.php");

19

8.5

restoreAll.php, will clear the existing log,index and delete
the existing files on the dew server. Later,it replaces with
the data from the cloud server.

restoreAll.php

<?php
require_once _ DIR
' /vendor/autoload.php’;
// Autoload files using Composer autoload
use lib\DewTextLib;

//clear log

DewTextLib::clearFilesOnRestore ("log/log");
//clear index
DewTextLib::clearFilesOnRestore ("log/index") ;
//delete rest files
DewTextLib::delFilesOnRestore ("text");

//read

Sfc=array () ;

Sindex = $_POST[’index’];

echo $index."
";

str_replace ("\\n", "\n", $index) ;
Scontent, "\n");

Scontent =
Si=substr_count (
Scount =0;
for (; Scount<$i; Scount++)
{
Sfcx= $_POST["newScount"];
Sfcl[l=Sfcx;
}
DewTextLib: :addOnRestore
($index, $fc, "text", "log/index") ;
7>

8.6 sendAll.php

sendAll.php will fist initiate the restoration of all files.
Then, it gets the contents from the log and send it to the
dew server. The ”Title” and the “Contents” of the file are
updated.

<form id="instruction" method="post"
action = "http://localhost/dewText/
restoreAll.php">

<?php

S$fileindex =

file_get_contents ("log/index");//get log
$Senc = Json_encode ($fileindex);

print ("<input name=\"index\" value=$enc />");

//send log to dew
Scontent = $fileindex;
Scount = 0;

while (Scontent !=

{

" ")

$1lineEnd = strpos (Scontent,"\n");
$line = substr ($Scontent,0,$lineEnd);
//get line

Scontent =

substr ($Scontent, $1ineEnd+1) ;

//rest of log //add all files
for ($i=0; $i< Sna; S$i++)
Stitle = $line;//get title {
echo S$title."
"; Sk = "new".$i;
$path = "text/".s$title.".txt"; Spath = $_POST[Sk];
//get path Sk = "newC".$1i;
if (file_exists ($path)) Sseris = $_POST[S$k];
{
$file= file_get_contents ($path); //save file
//get file content S$file = fopen ($path, "w");
//echo S$file."
"; fwrite ($file, $seris);
print ("<input name=’'newS$count’ fclose ($file);
value = "S$file’>");
Scount++; //add to index
} $s = strpos ($path,"/");
} $d = strrpos ($path,".");
2> $1 = 8d - $s - 1;
</form> Stitle = substr ($path, $s+1,81);
<script>
var form = //check if it exist
document .getElementById ("instruction"); $file = fopen("log/index","r+");
form.submit () ; Snew = true;
</script> while (! feof ($file))
{
8.7 synchCloud.php //remove \n at the end
$line = substr(fgets($file),0,-1);

synchCloud.php will help in synchronizing the title and
contents of the file on the cloud, i.e any updation or deletion
of files.Subsequently, removing these files from the log
present in the index if the file is deleted or updating the

if($line == $title)
{

Snew=false;

contents of the existing file.) break;
<?php }
if (Snew)
Sdnum = $_POST[’delNum’]; {
Snd = (int) $dnum; fwrite($file, $Stitle);
//del all files fwrite ($file, "\n");
for ($i=0; $i< S$Snd; S$i++) }
{ fclose ($file);
Sk = "del".$1i; }
Spath = $_POST[S$k];
if(file_exists ($path)) //clear log
{ file_put_contents ("log/log","");
//delete file ?>
unlink ($path);
} 8.8 sendLog.php

sendLog.php,first it synchronize all the files present in the
dew server and cloud server and then it will update the
log.It will also have the updated file contents after deletion
or creation of the files.

//remove from index

Ss strpos ($Spath,"/");

$d strrpos ($path,".");

$1 = $d - $s - 1;

Stitle = substr ($path, $s+1,5$1);

<form id="instruction" method="post"

Scontents = action="http://localhost/dewText/synchDew.php">
file_get_contents ("log/index") ; <?php
Scontents = //get log
str_replace($title."\n", ’’, S$Scontents); $log= file_get_contents ("log/log");
file_put_contents ("log/index", S$contents); Senc = Jjson_encode ($109g);
} //send log to dew
print ("<input name=\"log\" value=$enc />");
Sanum = $_POST[’newNum’]; //echo $log;
Sna = (int) $anum; Scontent = $log;

20

Scount = 0;
while (Scontent

{

= nmy

$lineEnd = strpos ($content, "\n");
//get line
$line = substr ($Scontent, 0, $lineEnd);

//rest of log

SaddpathList=array () ;
ScontentList=array();
//array of logCloud,
$lineCloud =
DewTextLib::getlineArray ($logCloud);

each element is a line

$lineDew =

Scontent = substr (Scontent,$lineEnd+1) DewTextLib::getlineArray ($logDew) ;
//get first|

Ssepratorl = strpos($Sline,"|"); $indexCloud = 0;

//get second] $indexDew = 0;

$seprator2 = strrpos($line,"|"); $lengthCloud = count ($1ineCloud);
//get flag, del or new $lengthDew = count ($1lineDew) ;
$flag = substr($line, $sepratorl+l, 3);

if($flag == "new")//ignore del $count = 0;

{
//get title
Stitle =
//get path
Spath = "text/".S$title.".txt";
if(file_exists ($path))
{
//get file content
Sfile= file_get_contents ($path);
print ("<input name=’newS$Scount’
value='S$file’>");
Scount++;

}

?>

</form>

<script>
var form =
document .getElementById ("instruction");
form.submit () ;

</script>

8.9 synchDew.php

syncDew.php will collect all the contents from the files and
consolidate it in a single notebook.It will also synchronize
with the deletions or updations of any file.

<?php
require_once __ _DIR__ . '
/vendor/autoload.php’;
// Autoload files using Composer autoload
use lib\DewTextLib;

$seris = $_POST["log"];

$logCloud =
str_replace ("\\n", "\n", $seris);
echo "logcloud:".$logCloud."
";
SlogDew = file_get_contents ("log/log");
//file path => content
$fileContent = array();

$toAdd = array();// file path
$toDel = array();// file path
Sfc= array();
SdelpathList=array();

21

while ($indexCloud <
substr ($line, $seprator2+1)$lengthCloud && $indexDew < S$SlengthDew)

//none of them reach end

{

$linel = $lineCloud[$indexCloud];
$line2 = $lineDew[$indexDew];

Stimel = DewTextLib::getTime ($1linel);
Stime2 = DewTextLib::getTime ($1line2);

if ((int) $Stimel< (int) $time?2)
//cloud is earlier

{

$flag = DewTextLib::getFlag($linel);
if($flag == "new")
{
Sfc[]l= $_POST["newScount"];
//get content
Scount++;

}
$indexCloud ++;

}

else{//dew is earlier

SindexDew ++;

for (;
//log cloud remains

{

$linel = $lineCloud[$indexCloud];
$flag = DewTextLib::getFlag($linel);
if($flag == "new")

{
var_dump ($_POST) ;
$fc[] = $_POST["newScount"];
//get content

}
list (StoAdd, StobDel, $fileContent) =
DewTextLib: :prepAddDelCont ($1ineCloud,

$indexCloud<$lengthCloud; $indexCloud++)

$lineDew, $fc, $toAdd, $StoDel, $fileContent) ; S$file = fopen("log/log","a");
$log = time () ."|".Stype."|" . S$title."\n";
print ("<form id=\"instruction\" method=\"post\" fwrite ($file, $log);

action = \"http://ec2-18-224-251-211.us-east-2.compute fclose ($file);
amazonaws.com/dewText/synchCloud.php\">");

//del all files

list ($delpathList)= //Add file details in arrays that are

DewTextLib::delSynch ($toDel, S$delpathList); //new/changed for synching

Sdnum = count ($delpathList) ; public static function add($path,

print ("<input name=\"delNum\" value=\"$dnum\" />") Scontent, S$toAdd, S$toDel, $fileContent)

for ($i=0; $i< S$dnum; S$i++) {

{ //check if this is in toDel array
//prepare form for ($1i=0; $i< count (StoDel); S$i++)
print ("<input name= {

\"delS$i\" value=\"S$delpathList [$i]\" />"); //remove it from toDel
} if (StoDel[$i] == $path)
{

//add all files array_splice($array, $i, 1);

list ($SaddpathList, $contentList)= break;

DewTextLib: :addSynch ($toAdd, $fileContent, }

SaddpathList, $contentList); }

Sanum = count ($addpathList);

print ("<input name= //check if this is in toAdd array

\"newNum\" value=\"$anum\" />"); Snew = true;

for ($i=0; $i< $anum; S$i++) for ($1i=0; $i< count ($toAdd); $i++)

{ {

//prepare form //it’s already in toAdd, don’t add it again
Spath=%$addpathList[$i]; if (StoAdd[$i] == S$path)

print ("<input name= {

\"new$i\" value=’S$path’ />"); Snew = false;

print ("<input name= break;

\"newC$i\" value='’S$contentList [$path]’ />"); }

} }
//add it to toAdd

print ("</form>"); 1f (Snew)

//clear log {

file_put_contents ("log/log",""); StoAdd[] = S$path;

?> echo "after add".count (StoAdd) ."
";
}

<script>

document .getElementById ("instruction") .submit () ; //then refresh content
</script> SfileContent [$path] = S$Scontent;
8.10 DewTextLib.php return array ($toAdd, $toDel, $fileContent);

DewTextLib.php comprises of all the library functions
which help in building the Web in Dew APIs.It will help
in saving the changes in the log file,add or delete the
content of files,add or delete file when synchronized,add or
delete files on restoration,clear the file contents on restora-
tion,appending the lines in array,get timestamp and get the
flag details if there is any updation or deletion of files.

//Add file details in an array that are to be del
public static function del ($path, S$toAdd, S$toDel)
{

//check if this is in toAdd array

for ($i=0; $i< count ($toAdd); $i++)

{

<?php if (StoAdd[$i] == $path)//remove it from t
namespace lib; {
class DewTextLib array_splice ($array, $i, 1);
{ break;

}

//after saving changes update log file }

public static function changeInFile ($title, Stype)

{ //check if this is in toDel array

22

Snew true;

for ($i=0; $i< count ($StoDel); S$i++)

//it’s already in toDel,

if ($toDel[$i] == $path)
{
Snew = false;
break;

}
if (Snew)//add it to toDel
{

StoDell]

Spath;

return array ($toAdd, $toDel);

//get lines of a file in an array
public static function getlineArray ($Scontent)

{

$lineArray array () ;
while (Scontent ")

{

$lineEnd = strpos (Scontent, "\n");
//get line

$line = substr ($Scontent, 0, $1lineEnd);
SlineArray[] = $line;

//rest of log

Scontent = substr ($content, $lineEnd+1)

}

return $lineArray;

//get time stored in the log file

public static function getTime ($1line)

{

//get first |
$Ssepratorl strpos ($1line, " |");
Stime substr ($line, 0, $sepratorl);
return S$time;

//get "new"/"del" stored in the log file
public static function getFlag($line)
{
//get first |
Ssepratorl strpos ($line, " |");
Sflag substr ($line, $sepratorl+l, 3);
return $flag;

//get file name stored in the log file

public static function getTitle($line)

{

//get second |
Sseprator?2 strrpos ($line, " |");
Stitle substr ($1line, $seprator2+1) ;
return $title;

23

//prepare add, delete and file content

public static function prepAddDelCont
{ ($lineCloud, $lineDew, $fc, StoAdd, StoDel, $fileContent)
don’t add it agdin

$indexCloud = 0;

SindexDew = 0;

$lengthCloud = count ($1lineCloud) ;
SlengthDew = count ($lineDew);
$Scount = 0;

//none of them reach end
while ($indexCloud < $lengthCloud &&
$indexDew < $lengthDew)

{

$linel = $lineCloud[$indexCloud];
$line2 = $lineDew[$indexDew];
Stimel = self::getTime ($linel);
Stime2 = self::getTime ($1line2);

//cloud is earlier
1f((int) Stimel< (int) $time?2)
{

S$flag = self::getFlag($linel);
Stitle = self::getTitle(S$linel);
Spath = "text/".Stitle.".txt";
if($flag == "del")

{
list (StoAdd, StoDel)
; self::del ($path, StoAdd, $toDel) ;
}
else if ($flag == "new")

{

list (StoAdd, $StoDel, $fileContent)
self::add($path, $fc[Scount],
StoAdd, $StoDel, $fileContent);
Scount++;

}

SindexCloud ++;

}
else({
//dew is earlier

S$flag = self::getFlag($line2);
Stitle = self::getTitle($1line2);
$Spath = "text/".S$title.".txt";
if($flag == "del")

{
list ($toAdd, StoDel)
self::del ($path, $StoAdd, $toDel) ;

}
else if($flag

{

== "new")
if(file_exists ($path))
{
//get content
$fcon file_get_contents ($path);
list (StoAdd, StoDel, $fileContent)
self::add($Spath, $fcon, $toAdd,
StoDel, $fileContent) ;
}

10

SindexDew ++;

//1log cloud remains

for (; $indexCloud<$lengthCloud; $indexCloud++)

{

$linel = $lineCloud[$indexCloud];
$flag = self::getFlag($linel);
Stitle = self::getTitle($1linel);
Spath = "text/".S$title.".txt";
if($flag == "del")

{
list (StoAdd, StoDel) =
self::del ($path, $StoAdd, $toDel) ;
}
else 1if($flag == "new")
{

}
list (StoAdd, StoDel, $fileContent) =
self::add ($path, $fc[Scount], }
StoAdd, StoDel, $fileContent) ;

Scount++;

}

for (; $indexDew<$lengthDew; $indexDew++)

{

}

$1line2 = $lineDew[S$indexDew];
$flag = self::getFlag($line2);
Stitle = self::getTitle($1line2);
Spath = "text/".S$title.".txt";
if($flag == "del")

{
list (StoAdd, StoDel) =
self::del ($path, StoAdd, $toDel) ;
}
else 1if($flag == "new")
{
if(file_exists ($path))
{
//get content
Sfcon = file_get_contents ($path);
list (StoAdd, $toDel, $fileContent) =
self::add ($path, $fcon, $toAdd,
StoDel, $fileContent) ;
}

return array ($toAdd, $toDel, $fileContent);

11

if (file_exists ($path))
{
//delete file
unlink ($path) ;

//remove from index
$s = strpos ($path,"/");

$d = strrpos (Spath,".");

$1 = Sd - $s - 1;

Stitle = substr ($path, $s+1,5$1);
Scontents =

file_get_contents ("log/index");
Scontents =

str_replace ($title."\n", ’’, Scontents);
file_put_contents ("log/index",
S$delpathList []=$path;

return array ($delpathList);

// add files for synchronization

public static function addSynch ($toAdd,

SfileContent, $SaddpathList, ScontentList)
{
Sanum = count ($toAdd) ;
for ($i=0; $i< Sanum; S$i++)
{
Spath = $toAdd[Si];
Scontent = $fileContent[$pathl];
$addpathList []=$path;
ScontentList [$path]=Scontent;

//save file

$file = fopen (Spath, "w");
fwrite ($file, Scontent) ;
fclose ($file);

//add to index
$s = strpos (Spath,"/");

$d = strrpos ($path,".");
$1 = Sd - $s - 1;
Stitle = substr($Spath,$s+1,$1);

//check if it exist

$file = fopen("log/index","r+");
Snew = true;

while (! feof ($Sfile))

{

//remove \n at the end

Scontents) ;

$line = substr(fgets($file),0,-1);
if ($line == $title)

// delete files for synchronization {

public static function delSynch ($toDel, $delpathList) Snew=false;
{ break;
$dnum = count ($toDel); }
}
for ($i=0; $i< S$dnum; S$i++) if ($new)

{ {

Spath = S$toDel[$i]; fwrite ($file, Stitle);

24

fwrite ($file, "\n");
}
fclose ($Sfile);
}

return array ($SaddpathList, $ScontentList);

//clear dew files to restore cloud data
public static function
clearFilesOnRestore ($filePath)

{

file_put_contents ($filePath, "");

}

//deleting files inside the input folder
public static function
delFilesOnRestore ($folderPath)

{
//echo S$folderPath."/x";
// get all file names
$files = glob($folderPath."/«");
foreach($files as $file)
{ // iterate files
if(is_file($file))
unlink ($file); // delete file

//add files on restore

// (instead of storing file names

in a text file, get it in array format?)
public static function addOnRestore ($index,
SfileCont, $filePath, $fileNamesPath)

{

Scontent = str_replace ("\\n","\n", $index) ;

file_put_contents ($fileNamesPath, Scontent) ;

Scount = 0;
while ($content != "")
{
$lineEnd = strpos ($content, "\n");
//get line
Sline = substr ($Scontent, 0, $lineEnd);
//rest of log
Scontent = substr ($Scontent, $lineEnd+1);
$title = S$line;//get title
$fc = $fileCont[Scount];
Scount++;
Spath = $filePath."/".S$title.".txt";
//save file
$file = fopen ($path,"w");
fwrite ($file, $fc);
fclose (Sfile);
}

25

12

Keyword Index

Blockchain 11
Cloud computing 8
Cloud services 11
Cloud Servers 11
Cloudlet 1,8
CPSoS 1
Cyber-physical systems 1
Dew computing 8, 11, 14
Dew computing API 14
Dew Text 14
Edge computing 1,8
Fog computing 1,8
Post cloud architecture 1
Post-cloud computing 8
Post-cloud computing applications 8
SiD 11
Software in Dew 11

26

