
Dewblock: A Blockchain System
Based on Dew Computing

Yingwei Wang
School of Mathematical and Computational Sciences

University of Prince Edward Island
Charlottetown, Canada

Email: ywang@upei.ca

Abstract—The blockchain technology enabled cryptocurrencies
and a lot of other applications that trust is needed among
different entities. Because every blockchain client needs to keep
huge amount of blockchain data, some personal computers and
mobile devices cannot be used to run blockchain clients. To make
things worse, the size of blockchain data is always increasing.
In this paper, a new kind of blockchain system, Dewblock, is
introduced. In this system, a blockchain client does not need
to keep the blockchain data and it also has the features of a
blockchain full node. Dewblock was developed based on dew
computing principles and architecture.

Index Terms—Blockchain; Dew computing; Cloud-dew ar-
chitecture; Cloud services; Blockchain full client; Blockchain
lightweight client.

I. INTRODUCTION

Blockchain was first introduced with Bitcoin, a cryptocur-
rency, but blockchain is not limited to cryptocurrencies. It
can be used in various occasions. Ginni Rometty, the CEO
of IBM, once said: “Blockchain will do for transactions what
the internet did for information” [1].

Blockchain has a feature that limits the range of its ap-
plications: each blockchain full client has to keep the whole
blockchain starting from the genesis block; this blockchain
gets longer and longer with the operation of the blockchain
network. For this reason, a blockchain full client is not suitable
to be deployed to personal computers and mobile devices.

It is desirable to find solutions to tackle the above problem
so that the data size of a blockchain client can be reduced.
Such kind of solutions are hard to find because this problem
comes with the essential nature of blockchain. Blockchain data
itself is the heart of the blockchain technology; the data size
of a blockchain client is inherently big and inherently keeps
increasing.

For some cryptocurrency systems, such as Bitcoin and
Ethereum, their blockchains already have huge amount of
data; a quite powerful computer is needed to run a full
client. To make these cryptocurrency systems accessible by
users, blockchain lightweight clients were developed and are
widely used. These lightweight clients do not need to keep
the whole blockchain data so that they can be deployed to
personal computers and mobile devices. These lightweight
clients include SPV (Simple Payment Verification) wallets,
such as Electrum, Copay, and so on.

All the lightweight clients are not qualified as full clients.
They do whatever the majority of mining power says. They
rely on the support provided by full clients. These lightweight
clients are necessary and they are playing important roles in
the cryptocurrency systems. But the goal of this paper is not
to find another lightweight client.

Blockchains can be used in wide range of areas. Various
blockchain systems will be developed in the future for different
kinds of transactions. We want to propose a generic blockchain
client architecture so that these clients can be deployed to
personal computers and mobile devices and these clients still
have features of full nodes.

With such goals in mind, we would like to introduce
a new blockchain system: Dewblock [2]. Dewblock’s dew
clients do not keep blockchain data so that their data size is
very small; Dewblock’s dew clients still have features of full
nodes; Dewblock is based on dew computing principles and
architecture [3][4].

The rest of the paper is organized as follows: Section II
discusses the two models of blockchains and indicates that
the Dewblock approach can only be applied to blockchains
based on one model. The good news is that the model of
a blockchain can be changed. Section III, Section IV, and
Section V introduce the key concepts of Dewblock. Section VI
introduces the Dewblock project and its resources. Finally,
Section VII is devoted to conclusions.

II. STATE-KEEPING MODELS

The approach to control client data size that we are going to
introduce in this paper cannot be applied to arbitrary kinds of
blockchain systems. To determine each blockchain’s suitability
to our new approach, we discuss the state-keeping models of
blockchains in this section.

Blockchains can be considered as state transition systems
or state machines [5]. Different state-keeping models can
be used. Two types of state-keeping models are popular in
todays blockchain networks. The first model is the unspent
transaction output (UTXO) model. The second one is the
account model. For example, Bitcoin uses the UTXO model
[6], and Ethereum uses the account model [5].

Being the first blockchain system, Bitcoin is operated using
the UTXO model. In the UTXO model, each transaction
spends output from prior transactions and generates new

34



outputs that can be spent by transactions in the future. All of
the unspent transactions are kept in each full client. A user's
wallet keeps track of a list of unspent transactions associated
with all addresses owned by the user, and the balance of the
wallet is calculated as the sum of those unspent transactions.

The account model, on the other hand, keeps track of the
balance of each account as a global state. When a transaction
is being verified, the balance of an account is checked to make
sure it is larger than or equal to the spending amount of the
transaction.

Each of these two models has its advantages and disadvan-
tages. The features of these two models have been discussed
in literature [7][8]. From our viewpoint, we believe that the
difference between these two models is that they have different
thinking logic or different philosophy: the UTXO model is
history oriented; the account model is reality oriented.

As Satoshi Nakamoto mentioned in his historic paper [6]:
“We define an electronic coin as a chain of digital signatures.
Each owner transfers the coin to the next by digitally signing
a hash of the previous transaction and the public key of the
next owner and adding these to the end of the coin. A payee
can verify the signatures to verify the chain of ownership.”
Using an analogy, if you want to verify a coin is true in our
daily life, you have to go over all the transactions this coin
went through: the transaction that person A gave the coin to
you; the transaction that person B gave the coin to person A,
and so on, until the coin was made in the mint.

This logic works, and might be meaningful in some sense,
but it is in contrary to our daily practice. Using this model,
all the transactions since the start of the blockchain should
exist and ready for verification. Banks usually keep detailed
transaction history for quite a long time, but no bank will
keep all its transactions forever. As time goes by, the size of
the transaction history gets bigger and bigger. This model is
not sustainable; at least it is not sustainable for most clients
in a blockchain network.

Using account is our daily practice in keeping records.
People’s money saved in bank accounts. Each student has
a profile in his/her university and this profile is called an
account. The key points of an account-based system is that the
accounts reflect current state of the system and these accounts
do not rely on the complete history of the system, whether the
system is a bank, an organization, or a blockchain.

Our efforts to develop small-data-size blockchain clients
shall be based on the account-model blockchains instead of
the UTXO-model ones. This restriction does not limit this
approach’s application because UTXO-model blockchains can
be converted into account-model blockchains.

The new blockchain system we are going to introduce,
Dewblock, was developed from another blockchain system:
Naivecoin [9]. Naivecoin uses UTXO model. To reach our
goals, we have switched Naivecoin from the UTXO model to
the account model. For convenience of discussion, we would
like to give a name to the Naivecoin system that has been
switched to account model: Account-Naivecoin.

The successful conversion of Naivecoin from the UTXO
model to the account model shows that the new approach we
have introduced in Dewblock can be applied to all blockchain
systems, although a conversion might be needed. In the future,
when new blockchain systems are designed for various kinds
of transactions, account model shall be used if we want to
adopt the Dewblock approach.

III. DEWBLOCK ARCHITECTURE: CLOUD-DEW
ARCHITECTURE

Dewblock is designed based on cloud-dew architecture [3].
A Dewblock package is composed of a cloud server and a
dew server; the cloud server and the dew server talk to each
other through a new type of message channel; the dew server
operates in two different modes. These topics will be discussed
in the following subsections.

A. Cloud Server and Dew Server

To introduce cloud-dew architecture to Account-Naivecoin
blockchain system, we would use two copies of Account-
Naivecoin client. Using the terminology of cloud-dew archi-
tecture, we call one Account-Naivecoin client cloud server,
and call the other Account-Naivecoin client dew server. Here
we need to clarify a few terms. The term client which appeared
in blockchain client, full client, lightweight client, Account-
Naivecoin client means a client of the blockchain network. The
term server which appeared in cloud server and dew server
means a server to a user. Thus a cloud server or a dew server
could act as a blockchain client; a blockchain client could be
considered as a cloud server or a dew server. In the rest of the
paper, terms cloud server and dew server refer to software or
program package; terms dew client and full client refer to this
software’s role in a blockchain network.

The names cloud server and dew server make sense because
the cloud server usually be deployed to a public cloud service,
such as Amazon Web Services or Google App Engine, or a
private cloud service where the environment is configured to
support such cloud servers, and the dew server usually be
deployed to a personal computer or a mobile device.

The dew server is basically a copy of the cloud server but
is not necessarily the exact copy of the cloud server. In this
case, we would like to introduce an important and interesting
difference between the cloud server and the dew server: The
cloud server contains the blockchain but the dew server does
not contain the blockchain. In such a system, the data size of
the dew server would be quite small.

Before we go further from here, we should make one thing
clear: Account-Naivecoin uses account model, but it does
keep the blockchain. Can a dew server operate without a
blockchain? In other words, is it possible for an Account-
Naivecoin client without the blockchain to work with the rest
of the Account-Naivecoin blockchain network?

The answers to the above questions are both positive. We
may modify the dew server copy of the Account-Naivecoin
so that it does not keep the blockchain but otherwise it still
operates in the same way. In an Account-Naivecoin blockchain

35



network, if one client throws out the blockchain, it can still
operate well in the network: it can make transactions; it can
maintain the transaction pool; it can communicate with other
clients; it can verify if a transaction is valid; it can even mine
a new block. The only problem this client has is that when
another client asks this client to provide the whole blockchain,
this client cannot respond properly.

An Account-Naivecoin client without the blockchain can
operate for most of the cryptocurrency functions, but it is
not a blockchain full node. This client does not have enough
strength to fight attacks. If only a few clients work this way, the
whole blockchain network would still run properly; if many
clients are not full nodes, the whole blockchain network would
deteriorate, and the trust brought in through blockchain would
be gone.

In Dewblock, a dew server is not a blockchain full node,
but a cloud server is. The pair of a cloud server and a dew
server can also serve as one single full node to the rest of
the Dewblock network. In blockchain terminology, node and
client were considered the same. In Dewblock, node and client
are not always the same any more. A blockchain client is a
program that a user installed in his/her computer or device to
operate a blockchain network. A blockchain node is a logical
unit that acts as one single identity in a blockchain network.
A node may contain a cloud server and a dew server, but a
client is always a dew server.

B. Message Channels

In an Account-Naivecoin network, only one kind of mes-
sage channel exists: inter-node channel. When the cloud-dew
architecture was introduced, another kind of communication
channel was needed for cloud servers and dew servers to
collaborate. The new kind of message channel between cloud
servers and dew servers is called cloud-dew channel. Web-
Socket protocol was used to create such channels.

In an Account-Naivecoin network, five kinds of messages
travel through the inter-node channels. In a Dewblock network,
four more kinds of messages were added and they could
travel through the inter-node channels and the new cloud-dew
channels. Some messages can travel in both kinds of channels;
some messages can only travel in one specific kind of channel.
The details of the message mechanism can be found in the
website http://www.dewblock.com. In the rest of this section,
Section IV, and Section V we will explain the rationals related
to the four kinds of newly-added message types.

Two new message types are introduced to transfer account
information through cloud-dew channels:

• QUERY ACCOUNTS
• RESPONSE ACCOUNTS.
To make sure that the account in a dew server is consistent

with the account in a cloud server, the dew server will peri-
odically send its account information to the cloud server for
verification. If discrepancy is found, the account information
in the cloud server will be fetched to the dew server to replace
the account information in the dew server.

C. Simple Node and Cloud-dew Node

In some situations, a dew server may want to operate as a
full client for various reasons. Such option should be provided
to users in case it is necessary. Thus a dew server can operate
in one of the two modes: dew mode and full mode.

When a dew server is in dew mode, it behaves as described
in Section III-A and Section III-B, and we call this dew server
a dew client. The cloud server and the dew client constitute
a single Dewblock node, and we call this node a cloud-dew
node.

When a dew server is in full mode, it behaves the same with
an full Account-Naivecoin client, and we call the dew server
a full client. In this mode, the dew server itself constitutes a
Dewblock full node, and we call this node a simple node. The
cloud server is not involved in the operation of a simple node;
it may be turned off, may be operated as a separate node, or
may be even not deployed at all.

From here on, we may use terms dew client or full client to
replace the term dew server whenever it is appropriate. With
these terms, the mode of the dew server is indicated.

A dew server can change its mode: it can be switched from
full mode to dew mode, or vice verse.

When a dew server is switched from local node to dew
mode, it needs to establish the cloud-dew channel with the
cloud server described in its configuration file, to establish its
connections with other nodes as described in Section IV, and
to discard the blockchain to become a small-data-size dew
client.

When a dew server is switched from dew mode to full mode,
it needs to obtain the blockchain from another place. One of
the possibilities is to establish an inter-node channel with the
cloud server to obtain the blockchain. The cloud-dew channel
between the cloud server and the dew server shall be cut off.
It also needs to re-establish its connections with other nodes
according to its new role.

IV. PAIR CONNECTION PROTOCOL

There are two types of nodes in a Dewblock network: simple
nodes and cloud-dew nodes. Here we discuss the process to
establish connections between nodes. First, proper connections
can be described in the following:

• When two simple nodes are getting connected, one inter-
node channel is needed to connect them.

• When one simple node and one cloud-dew node are
getting connected, two inter-node channels are needed:
one to connect the simple node to the dew client of the
other node and one to connect the simple node to the
cloud server of the other node.

• When two cloud-dew nodes are getting connected, two
inter-node channels are needed: one to connect the two
dew clients of the two nodes and one to connect the two
cloud servers of the two nodes.

We make a few assumptions:

• Connections are initiated by dew clients or full clients.

36



• A client knows its own mode. If it is in dew mode,
it knows the address of its cloud server through its
configuration file.

• A client needs to know the address of another client to
establish a connection.

• A client does not have to know the types of other clients
(full clients or dew clients) , although it may get to know
their types after exchanging messages.

We need to create rules so that connections between nodes
can be properly established. For the convenience of discussion,
we use an analogy to describe the above situation.

In a community, people need to get connected. We make
the following assumptions:

• Every person is in a family. A family could have a
gentleman and a lady or a single lady. A family cannot
only have a single gentleman.

• Every family has a contact person. A gentleman or a
single lady is the contact person. Connections could
be initiated by any contact person to any other contact
person. Somehow contact persons can find each other.
Each contact person decides if a connection request will
be accepted.

• A proper connection between two families can be de-
scribed in the following: a gentleman is connected to a
gentleman; a lady is connected to a lady; a gentleman is
connected to a lady only when the lady is single.

We create the following rules so that proper connections
among families can be established.

Gentleman’s Rule:
• Whenever he is involved in a connection, actively or

passively, he would make an introduction: “My name is
Mr. Blah. It is my honor to introduce my wife Mrs. Blah
to you.”

• Whenever he receives such an introduction from another
gentleman, he passes the introduction to his wife.

Lady’s Rule:
• Whenever she receives an introduction from her husband

or another gentleman, if she does not know the introduced
lady yet, she would connect with that lady and tell her
who introduced her.

• Whenever she receives a connection request and was told
who introduced her, she will accept the request only if
the introduction was from her husband.

The above rules can make sure all the ladies and gentle-
man are properly connected. We refer to these rules as Pair
Connection Protocol.

To implement the Pair Connection Protocol in Dewblock,
one more type of message was added. This message type is
ALTERNATE ADDRESS. This type of message can travel in
both inter-node channels and cloud-dew channels.

Whenever a dew client initiates a connection or receives a
connection request, it sends out an ALTERNATE ADDRESS
message to the other end of the connection. Whenever a dew
client receives such a message, it passes this message to its
cloud server.

Whenever a cloud server or a full client receives an
ALTERNATE ADDRESS message, it first checks if such a
connection already exists; if not, it initiates a connection with
the address specified in the message and sends this message
to the receiver. When a cloud server receives a connection
request and an ALTERNATE ADDRESS message, it verifies
that the message was originated from this cloud server’s dew
server before it accepts the connection.

V. COLLABORATION MECHANISMS

Let us continue to use the family analogy introduced in
Section IV to describe Dewblock’s collaboration mechanisms.
These descriptions further reveal the features of Dewblock,
and also demonstrate the important role of family analogy in
inspiring and explaining these mechanisms.

A. Integrity Keeping

If a dew client can perform all cryptocurrency operations,
why do we need a cloud server? In other words, why do we
need to operate a full node? The following analogy provides
an explanation.

All families in a community need to maintain the commu-
nity’s justice and well being. They need not only to work for
their own families, but also to vote for the community for
various reasons. Every family should have a voter. To satisfy
this requirement, every family designates the lady of the family
as the voter. Whenever a vote is called, the gentlemen would
ignore the call, but the ladies would vote. In a community with
strict rules, if a family does not participate voting for a while,
this family shall be excluded from the community.

In Dewblock, we have a similar situation. Each node has its
responsibility to keep the integrity of the blockchain network.
Each node needs not only to operate the node’s own functions,
but also to keep the whole blockchain and provide the whole
blockchain to other nodes when needed. The cloud server
or the full client of each node are designated to fulfill this
responsibility. The dew client of each node would ignore the
request to provide the whole blockchain. Strictly speaking, If a
node does not fulfill its responsibility in keeping the integrity
of the blockchain network for a while, this node might be
disconnected from the network. This exclusion rule has not
been implemented in Dewblock code yet and is on our future
agenda.

B. Mining in Cloud

Block mining is an important activity in blockchains. How
is mining performed in Dewblock? Let us check the similar
situation in the family analogy first.

All families in a community have meals together in a shared
fashion. It is an honour for a family to cook for the community.
Gentlemen can cook, but ladies cook better. Single ladies know
when to cook, but wives only cook when their husbands ask
them to do so.

Let us go back to Dewblock. Dew clients can perform block
mining. Because mining takes huge amount of computing
power, it may seriously influence the normal operation of a

37



personal computer or a mobile device where the dew client
is running. A better arrangement would be to ask the cloud
server to mine a new block on behalf of the dew client. A new
kind of message, MINING REQUEST, was introduced. This
kind of message travels through cloud-dew channels. When
such a message is received, the cloud server tries to mine a
new block; if successful, the new block will be added to the
Dewblock network.

VI. DEWBLOCK PROJECT

Dewblock is a blockchain cryptocurrency system that was
developed as a proof-of-concept system for the principles
described in this paper. It can be modified to accommodate
transactions on records other than cryptocurrencies.

Dewblock was developed on top of an open source project
Naivecoin [9][10]. Naivecoin is a blockchain cryptocurrency
system. It tries to show that the basic principles in a cryp-
tocurrency can be implemented in a concise way. Naivecoin
uses the UTXO model.

Dewblock was developed through the following major
changes to Naivecoin:

• Naivecoin’s underlying state-keeping model has been
changed from the UTXO model to the account model.
Such modified Naivecoin was referred to as Account-
Naivecoin in this paper.

• Cloud-dew architecture was introduced. Dewblock
contains two packages: Dewblock-cloud-server and
Dewblock-dew-server. These two packages are modified
versions of Account-Naivecoin.

• Dew servers can operate in two different modes: dew
mode and full mode. When a dew server is in dew mode,
it operates without the blockchain.

• A new kind of message channel, cloud-dew channel, was
added. Four new types of messages were added.

• Pair Connection Protocol was implemented.
• Collaboration mechanisms, such as integrity keeping and

mining in cloud, were implemented.
• Web commands were updated; configuration files were

added.
The source code of Dewblock is stored in Github [11]

as open source software under Apache License. The imple-
mentation details and operation instructions can be found in
http://www.dewblock.com.

The most significant feature of Dewblock is that it provides
a dew client; the dew client does not keep blockchain data; the
dew client is part of a blockchain full node. Such dew clients
can be introduced in various blockchain systems and deployed
to personal computers and mobile devices.

VII. CONCLUSIONS

At the heart of the blockchain technology, a distributed
secure ledge, a blockchain, is stored in every node of the
network and trust can be established among unknown parties.
By definition, blockchain data has to exist in every node and
the data amount increases with time. Thus, the problem we are
trying to tackle, blockchain clients’ data size is too big and

always increasing, is inherent to this technology. In the past,
some approaches have been proposed to reduce the data size
of blockchain clients, but these clients do not have the status
of full nodes. Although these approaches provide convenience
to users, they cannot be used in the backbone of blockchain
networks.

Dewblock brings in a new approach that the data size of a
client is reduced and the features of a full node are still kept.
The key point is that the two concepts, blockchain client and
blockchain node, are not the same any more in Dewblock.
While a client is light-weighted and is conveniently operated
in a personal computer or a mobile device, the client works
with a remote cloud server to act as a full node.

This approach was inspired by dew computing principles.
The architecture of Dewblock is the cloud-dew architecture.
A dew client operates independently to perform blockchain
activities; it also collaborates with the cloud server to maintain
the integrity of the whole blockchain network. Two major
features of dew computing, independence and collaboration,
are demonstrated clearly in this application.

With Dewblock, each blockchain user needs to deploy a
cloud server to a cloud service. From technical and economical
viewpoint, the widely use of cloud services by individual users,
including blockchain users, is feasible and affordable. Appar-
ently, Dewblock, as a dew computing application, promotes
the usage of cloud computing. This fact demonstrates the
relationship between dew computing and cloud computing:
cloud computing enabled dew computing; dew computing
further promotes cloud computing; dew computing is the
complementary piece of cloud computing [12].

REFERENCES

[1] Sthuthie Murthy. (2018, May) “Blockchain will do for
transactions what the internet did for information” -
says IBM CEO. [Online]. Available: https://ambcrypto.com/
blockchain-for-transactions-internet-for-information-ibm-ceo/

[2] Yingwei Wang. (2018, Sept.) Dewblock. [Online]. Available: http:
//www.dewblock.com/

[3] Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199–210, 2015.

[4] Yingwei Wang, “Definition and categorization of dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1–7, 2016.

[5] Vitalik Buterin. (2013, Dec.) A next-generation smart contract
and decentralized application platform. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White-Paper#ethereum

[6] Satoshi Nakamoto. (2009, May) Bitcoin: A peer-to-peer electronic cash
system. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[7] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2202–2303, 2016.

[8] Brian Curran. (2018, Jul.) Comparing bitcoin & ethereum: UTXO
vs account based transaction models. [Online]. Available: https:
//blockonomi.com/utxo-vs-account-based-transaction-models/

[9] lhartikk. (2017, Dec.) Naivecoin: a tutorial for building a cryptocurrency.
[Online]. Available: https://lhartikk.github.io/

[10] ——. (2017, Dec.) Naivecoin. [Online]. Available: https://github.com/
lhartikk/naivecoin

[11] Yingwei Wang. (2018, Aug.) Dewblock. [Online]. Available: https:
//github.com/yingweiwang/dewblock

[12] A. Rindos and Y. Wang, “Dew computing: The complementary piece
of cloud computing,” in Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom)(BDCloud-SocialCom-SustainCom),
2016 IEEE International Conferences on. IEEE, 2016, pp. 15–20.

38


