
Formal Description of Dew Computing
Marjan Gusev

Ss. Cyril and Methodius University,
Faculty of Information Sciences and Computer Engineering,

Skopje, Macedonia
Email: marjan.gushev@finki.ukim.mk

Yingwei Wang
University of Prince Edward Island,

School of Mathematical and Computational Sciences
Charlottetown, Canada

Email: ywang@upei.ca

Abstract—Dew Computing is a specific cloud-related comput-
ing architecture that brings the computing closer to the user.
Two main features of the dew computing include independence
of external systems and collaboration with other cloud servers,
making it an environment that can work in two modes, localized
mode where all the services are provided within the internal
local network perimeter and global mode, where it functions
just as an intermediate device in the client-server cloud model.
This article presents a formal description of dew computing as
a service model and defines its two main operating modes with
mathematical modeling functions.

Index Terms—Dew computing; Cloud computing; Formal spec-
ifications; Service modeling; Computational modeling; Turing
machines; Servers.

I. INTRODUCTION

Dew computing is an on-premises computer software-
hardware organization paradigm in the cloud computing envi-
ronment where the on-premises computer provides function-
ality that is independent of cloud services and, in the same
time, it is collaborative with cloud services, too.

The goal of dew computing is to fully realize the potentials
of on-premises computers and cloud services. Here, an on-
premises computer is a cloud computing term. It means local
computers, or non-cloud computers, which include personal
computers (desktops, laptops), tablets, smartphones, servers,
and clusters.

Wang [1] explains the essential dew architecture to be an
extension of a classical ”client-server” architecture concept
by introducing an intermediate dew server located close to
the client. Although this looks similar to the cloudlet concept
[2] as an edge computing concept [3], we will discuss the
distinctions among them in Section VI.

Dew computing has two major features: independence and
collaboration [4]. Independence means the on-premises com-
puter is able to provide functionality offline. Collaboration
means the dew computing application has to automatically
exchange information with cloud services during its operation.
Such collaboration includes synchronization, correlation, or
other kinds of inter-operation.

Ray [5] discusses that besides these two features, two more
features characterize dew computing. The first one addresses
the ”microservice provision”, as defined by K. Skala et al.[6],
which incorporate the theory of micro-service components
located far away from ent virtual infrastructures. The second

one specifies the ”scalability” in correlation to ”independence”
and ”collaboration” as analyzed by Ristov et al. [7].

Dew computing is an emerging research area and applica-
tion area. Although the theory and methods of dew computing
are being shaped, many dew computing applications have
already existed for many years, even before the dew computing
concept was proposed.

To clarify the concept of dew computing and to further
facilitate dew computing applications, we need to precisely
determine which applications are dew computing applications.
In other words, we need a model to describe dew computing
applications. In this paper, we try to develop such a formal
specification and computing model.

The rest of the paper is organized as follows. Section II gives
the background and describes the dew computing modeling
considerations. A model specification of a generic server
model is presented in Section III and formal definitions of
a dew service and dew server systems are introduced in
Section IV. Examples of simplified modeling using service
resources are elaborated in Section V. Section VI discusses
the derived model and compares our formal specification
with related approaches. Finally, Section VII is devoted to
conclusions and future work correspondingly.

II. BACKGROUND

This section elaborates a background for developing a for-
mal specification of dew computing, including dew computing
modelling considerations and service model essentials.

A. Dew Computing Modeling Considerations

A dew computing model should satisfy several require-
ments. For example, at least it should cover all forms of
dew computing applications provided as a service system, and
should not be restricted by a special group of applications.

For example, one simple way to model dew computing is
that every dew computing system is considered an internet.
Here the word internet starting with a lowercase i indicates that
this is a group of computers that are connected through TCP/IP
protocols. Considering this approach, each on-premises com-
puter or a group of such computers are organized as an
internet; websites are created on this internet; various services
exist in this independent dew world.

In this model, all the dew applications communicate with the
cloud which is the Internet with uppercase I; the relationship



between a dew and the cloud is actually the relationship
between a small internet and the big Internet. Although an
internet and the Internet are different in their sizes, they are
equal in terms of structure: they are both governed by TCP/IP
protocols; the collaboration feature between a dew and the
cloud can be interpreted as the communication among different
internets.

This model is very practical and useful. It covers a broad
range of applications, including dew servers and dewsites of
the Web in Dew (WiD) applications.

This model has its drawbacks. The biggest problem is that It
has limitations; only those applications that conform to TCP/IP
protocols are covered. Theoretically, dew computing can be
implemented using techniques other than those using TCP/IP
protocols.

Analyzing the application domains, Rindos and Wang [8]
identify Web in Dew (WiD) and Infrastructure as Dew (IaD)
categories of dew computing. Later on, new categories are
identified as Storage in Dew (STiD), Database in Dew (DiD),
Software in Dew (SiD), Platform in Dew (PiD), and Data
in Dew (DaD). Also, several research papers include dew
computing in IoT architectures and applications [9].

Based on the above discussions, we need a dew computing
model that covers a broader range of dew computing applica-
tions, that does not directly involve technical implementation
details.

B. Server and service provision model

We consider that a service is provided by a complex system
that interacts with other systems and performs a transformation
of the requests to provide the output. This complex system is
considered as a service provision system, and generally, is
called a server system. Fig. 1 presents a basic model of the
server that provides a generic service.

Fig. 1. Model of a basic server system providing a service to the device using
external systems to compute results

To understand the basic model, Fig. 1 also contains a
description of a device, which can be any computing or another
device that can generate a service request (defined as an input
to the server) and obtain a service response (defined as an
output of the server). In a classic client-server model, the client
is any computing device that sends a service request, and the
server is the computing unit that generates a service response.

In addition, Fig. 1 specifies an external system which in
essence is also another server system that generates a service

response to a given service request. However, in this case, the
analyzed server generates a service request as an input to the
external system and expects a service response generated by
the output of the external service system. The same terms
that are associated with input and output to the external
server system, in this case are treated as output and input
correspondingly to the analyzed server system.

Let’s dig deeper into the architecture of the basic server
system and its service provision. Internally, the analyzed server
system receives a service request defined by an input data I
and calculates an output data O that is transferred as service
response to the requestor device. The processing of the input
uses a set of data transformations. As this is a computing
system, it can generate the output based on the input data if
the system complies to a definition of a combinatorial logic
only.

However, the presented generic model of a server machine is
a more complex system, and besides the input, it computes the
output, also based on its internal state. In this case, the model
of this computing machine uses finite state automata and the
concept of memory that stores internal data. The memory itself
can be treated as another service system that accepts a service
request as an input and outputs a service response by providing
data. Once again the communication to the memory is by
a service. The analyzed server generates a memory service
request to the memory in order to access the internal data and
receives a service response as an output of the memory.

The overall server model also uses external data generated
by the external server systems, as discussed earlier. This sum-
marizes the definition of a generic server system to calculate
an output based on three different inputs:
• data input I generated by a client device (service re-

quest),
• internal data M provided by memory as an internal

service, and
• external data E provided by external services.
As a conclusion, a generic server system depends on other

server systems, such as memory and external service providers.
It transforms the data input I , using internal data M and
external data E provided by corresponding service providers
to generate output data O,

Therefore, a typical modeling will define a relation between
the output O and inputs I,M,E by a specific transformation
function ω. In addition, it will change internal data in the
memory by a specific state transition function δ. Details on
the development of a service model are specified in the next
section.

III. A GENERIC SERVER MODEL

Our definition of a server model will be given in relation
to a specification of a Turing machine.

A. Turing Machine definition

Now, let’s analyze the connection of such a simple system
with a definition of a Turing machine or other models of
computations.



A (one-tape) Turing machine, according to Hopcroft and
Ullman [10], can be formally defined as a 7-tuple M =
{Q,Γ, b,Σ, δ, q0, F} where

• Q is a finite, non-empty set of states,
• Γ is a finite, non-empty set of tape alphabet symbols,
• b ∈ Γ is the blank symbol (the only symbol allowed to

occur on the tape infinitely often at any step during the
computation),

• Σ ⊆ Γ \ {b} is the set of input symbols,
• δ : (Q \ F )× Γ→ Q× Γ× {L,R} is a partial function

called the transition function, where L is left shift, R is
right shift. (A relatively uncommon variant allows ”no
shift”, say N, as a third element of the latter set.) If δ
is not defined by the current state and the current tape
symbol, then the machine halts.

• q0 ∈ Q is the initial state,
• F ⊆ Q is the set of final or accepting states. The initial

tape contents will be accepted by M if it eventually halts
in a state from F .

Anything that operates according to these specifications is
a Turing machine. Any service we are analyzing in this paper
is a Turing machine.

B. Specification of a generic server

Now let’s correlate our conceptual model of the device and
server systems to a definition of a Turing machine as a model
of computation or other models of computers. A conventional
Turing machine uses unlimited sequential memory, while real
computers use limited random access memory. In computer
science, random-access machine (RAM) is an abstract machine
model identical to a multiple-register counter machine adding
indirect addressing. Its equivalency to the universal Turing
machine can be observed if the RAM’s program and data
are stored in the registers realizing a so-called von Neumann
architecture.

We will give a mathematical definition of a server system
that will be an approximation of a final state machine defini-
tion, that will reflect the modeled system behavior.

Definition 1: A general mathematical model of a server
system is defined by:

• Θ is a finite non-empty set of data values called the data
alphabet,

• Σ is a finite non-empty set of input symbols called the
input alphabet, such that Σ ⊆ Θ

• Γ is a finite non-empty set of output symbols called the
output alphabet, such that Γ ⊆ Θ

• S is a finite non-empty set of states,
• λ is a finite set of input data values, such that Λ ⊂ Σ,
• µ is a finite set of memory data values, such that µ ⊂ Θ,
• ν is a finite set of data values obtained by the external

server systems, such that ν ⊂ Θ,
• ρ is a finite set of output data values obtained as a

response of the server, such that ρ ⊂ Γ,
• s0 is the initial or start state, such that s0 ∈ S

• δ is a transition function given by (1)

δ : S × Σ×Θ×Θ→ S (1)

• ω is an output function given by (2)

ω : S × Σ×Θ×Θ→ Γ (2)

Θ is the set of all data values that can be treated as
an input, output, and memory data value. In reality, it may
represent any string, number or structured data. Σ and Γ are
sets that represent the possible input and output values used
by the system. The triple (Θ,Σ,Γ) consists of alphabets of all
possible data used by the system, correspondingly as memory
values, accepted input and generated output. In addition, the
set of all possible states is S.

The quadruple (s0, λ, µ, ν) consists of the initial system
state s0, actual input λ, requested memory values µ, requested
external data values ν.

Two functions determine the behavior of the system.
Each server functions as a kind of finite state automaton

and its behavior is determined by the state in which the
automaton is currently in, usually known as an initial state s0.
The transition function actually defines the final (exit) state
s1 of the finite state automaton by providing a function (3)
in a deterministic finite automaton. Instead of generating one
possible exit state the transition function may return a set of
states δ ⊆ S instead of one state s1.

s1 = δ(s0, λ, µ, ν) (3)

The output function (4) is calculating the set of output
values that the server system responds with.

ρ = ω(s0, λ, µ, ν) (4)

It can be conventional that both the transition and output
functions may not be defined on all possible states and data
values defined by the input, memory or obtained by an external
server system.

The behavior of the server system as a finite state automaton
can be modeled as a Mealy machine, since its output depends
on the input and internal state, and if the output depends
only on the current state then it can be modeled as Moore
machine. One may argue that the output function is obsolete
if a proper conversion from a Moore to an output-equivalent
Mealy machine (by labeling every edge with a transition
symbol). However, we prefer to use this definition since it
gives all relevant information for a faster understanding of the
server system behavior.

This model of the server system has the same computational
power as the Turing machine restricted to perform only read
operations and moving in one direction only.

IV. A DEW SERVER FORMAL SPECIFICATION

A. Dew server modeling

A dew server is a specific server system with certain
restrictions on the presented model. The main difference is
that the dew server can work in a closed environment without
the use of external server systems.



Therefore, a dew server’s definition is the same as the
previous one, but it needs to be extended with the availability
of the external server systems and reflect Internet connectivity.

Let’s denote by η ∈ B = {0, 1} the availability of Internet
connection and the external server systems, by a simple rule
that 0 means no availability, and 1 the availability.

The transition function will be modeled by (5) and the
output (exit) state will be given by (6).

δ : S × Σ×Θ×Θ× B → S (5)

s1 = δ(s0, λ, µ, ν, η) (6)

Note, that in the case of a nondeterministic finite automaton
the output may be a set of states ∆, instead of one state s1.

Similarly, the output function ω will be modeled by (7) and
the output data set will be given by (8).

ω : S × Σ×Θ×Θ× B → Γ (7)

ρ = ω(s0, λ, µ, ν, η) (8)

If the availability is η = 1 then the dew server model is
exactly the same as the general server model. However, if the
availability is η = 0 then the requested external server system
value will be undefined or get a not available data value N/A.
Therefore, the definition of all possible data values that the
dew server is operating will need to be extended to Θ′ defined
by (9). This also applies to the sets of input and output values,
correspondingly Σ′ and Γ′ as given by (9).

Θ′ = Θ ∪ {N/A}
Σ′ = Σ ∪ {N/A} (9)
Γ′ = Γ ∪ {N/A}

This means that in the case of unavailability of external
server systems (η = 0), the associated value that the system
will continue to use is ν = N/A and correspondingly the
output of the dew server will be N/A. So, the dew server
still performs the specified functions, but in the case of
unavailability, it gets a specific value. However, not all server
requests will need a value from external servers, and in this
case, the dew server will continue to function as it was initially
intended for.

Definition 2: A dew server system is a server system with
the following constraints to the Def. 1.
• Θ′ is a finite non-empty set of data values called the data

alphabet, defined by (9),
• Σ′ is a finite non-empty set of input symbols called the

input alphabet, defined by (9),
• Γ′ is a finite non-empty set of output symbols called the

output alphabet, defined by (9),
• λ is a finite set of input data values, such that Λ ⊂ Σ′,
• µ is a finite set of memory data values, such that µ ⊂ Θ′,
• ν is a finite set of data values obtained by the external

server systems, such that ν ⊂ Θ′,
• ρ is a finite set of output data values obtained as a

response of the server, such that ρ ⊂ Γ′,
• δ is a transition function given by (5)

• ω is an output function given by (7)
Finally, we define dew computing based on dew server

systems:
Definition 3:
If dew server systems are used in a computing process, this

computing process is called dew computing.

V. EXAMPLES OF SIMPLIFIED MODELING OF SERVICE
RESOURCES

In this section, we will present examples of simplified
models of the service resources. A service resource is either
an internal memory or external server.

A memory is an internal resource, realized as a set of
memory locations. A small part of the memory is used in
conventional computers as internal registers, which is a smaller
memory located next to the processing unit. In this sense, a
memory contains a larger number of memory locations. Each
memory location can be accessed by specifying its address
and specifying the memory access instruction.

The external server is also a service resource. It can be
accessed based on the availability function η. If the external
server is available, then the access is defined as a request with
input parameters and external server address.

We will continue with specifying a simplified mathematical
model of a memory and server.

A. A simplified model of a memory system

A memory is a specific server system. The service resources,
in this case, belong to a set of memory locations M. The
unique identifier of a memory location is its address α.

The memory can have different resource sets, such as
internal registers, and bulk memory. Therefore, the service
that a memory is providing needs to make a distinction to
which resource a service request is referred to. In this case,
the resource identifier τ is used as an input parameter in the
service request, besides the address.

In addition, the memory service function should be deter-
mined as ”store” or ”load”, by the function id ϕ.

Definition 4: A memory system is a simplified server system
with the following constraints to Def. 1:
• α is the address of a memory location, such that α ∈
{0, 1, . . . , 2M − 1} in a memory that contains 2M loca-
tions, where M is a positive integer,

• resource id τ ∈ 0, 1, . . . R− 1 in a system that uses R >
0 resources,

• function id ϕ ∈ {0, 1}, where 0 means memory load, and
1 means memory store,

• λ is the input set defined as a set of the address, resource
id, and function id, that is λ = {α, τ, ϕ},

• ρ is the output value getting a value of performing the
output function ρ = ω(α, τ, ϕ),

• s0 is the initial state that represents a ready state that waits
for an input triple to perform an activity according to the
specified function ϕ. When the service is requested, the
state changes to a busy state s1. Once the service response
is computed and an output is sent, the state changes to s0.



If a service is requested while the internal state is busy
then the request is held in a queue until the internal state
reaches the ready state s0.

B. A simplified model of a digital service system

The service resources are determined by the state, internal
memory and external server resources. Each state s ∈ S can
be determined by the internal registers. The set of all internal
registers R and the set of all memory locations M determine
the internal resources.

Note that in Def. 1 we have defined the values that can be
exchanged between the systems. Here we define the locations
where these values will be stored and used. Therefore, the set
I = R∪M is a representation of internal resources, as a set
of all internal memory locations. Note that these sets should
not be mixed with data values µ or the data alphabet Θ.

External resources are determined by a finite number of
external servers, with a set of E memory locations.

Both the Internal and external resources define the service
resources.

A service resource may belong to the dew computing con-
cept if it functions both with or without Internet availability.
In addition, it needs to be close to the service requestor to
belong to a class of dew computing servers.

VI. DISCUSSION

A. Dew Computing Features

Two main features of the dew computing concept will be
analyzed in correspondence to our formal specification.

Independence is addressed by the availability function equal
to 0 (η = 0). In our formal specification, the dew server will
continue to deliver its services in the case without Internet
availability.

Collaboration is addressed by the availability function equal
to 1 (η = 1). In our formal specification, the dew server can
exchange information with the cloud servers, which means
synchronization of content or control parameters. Also, in this
case, the dew server will continue to deliver its services.

Collaboration enables at least the following:
• upward synchronization to transfer information to the

cloud server,
• downward synchronization to transfer information to the

dew server, and
• new service specification to define new services of the

dew server.
Upward synchronization means that the exchange of infor-

mation with the cloud server is such that data from the dew
server is sent to the cloud in order to be available for a wider
environment. It will not change the service definition repre-
sented by the transformation functions, including transition
function δ and output function ω.

Note that the independence feature specifies that the col-
laboration is not crucial for delivery of services. It means that
the collaboration means that the cloud server will receive some
information and not have any impact on the performance of
the dew server.

The upward synchronization is extensively used in an appli-
cation of dew computing solutions for IoT, such as wearable
eHealth sensors that deliver data to a smartphone, being a dew
server, that functions with and without Internet availability.
In the case of Internet availability, the smartphone sends all
received data to the cloud server.

Downward synchronization means that the exchange of
information with cloud servers may change the set of internal
memory values µ. Therefore, this will change the internal state
of the dew server and initiate results (service output) different
from those that will be obtained if the internal state was not
changed. For example, this feature is used to define a new
content of the dew server that delivers localized web content.

One more function may be used with the collaboration
function. It may be used to define a new service with specific
transition function δ and output function ω. This makes the
dew server a rich environment to deliver services.

B. Comparison with related approaches

Let’s compare our server system definition with other defi-
nitions and specifications. Zhang et al. [11] specify a service
model as a Feedback Control-based Services System. They
specify the input of a service consumer and the output as a
fulfillment of a service requestor. A specific sensor feeds back
the response back in the system for continuous improvement
and business transformation. The interior components are
service activities/processes, service resources, service infor-
mation, service people and service partners. In addition, they
set the internal goal to increase the profit and decrease the
costs, and external goal to reach service level agreement.

In our model, we have identified the service resources
and service activities/processes. The service resources are the
internal memory and external server resources, and also the
service information kept as a state in our definition. The
transformation is defined by the transition and output functions
that compute the next service information and the output. Our
model refers to data computation and does not address people
and partners. Also, we do not analyze the business aspects by
setting business goals, we describe a digital version of a dew
server.

C. Dew computing vs. Edge computing

The essence of edge computing is to push applications,
data, and services away from central servers (core) to the
edge of a network. It is based on the core-edge topology.
While most devices are connected with core-edge topology
at the current time, some devices are connected with mesh
topologies, such as NYCmesh, Detroit’s Equitable Internet
Initiative, and eastern Afghanistan’s FabFi.

Dew computing is a different approach. It emphasizes its
independent operation without the Internet connection and its
collaboration with cloud services. Dew computing does not
rely on network topology.

Comparing dew computing and edge computing, dew com-
puting is featured by its collaboration with cloud services, and
it is not restricted by core-edge topology. Edge computing



also has its advantages. Because currently, core-edge topology
is still dominant in the Internet, edge computing encourages
researchers and professionals to move applications to the edge
of the network, which goes toward the same direction as dew
computing.

A cloudlet is a small-scale cloud datacenter located at the
edge of the Internet. It is the middle tier of a 3-tier hierarchy:
mobile device - cloudlet - cloud. Cloudlet is close to a mobile
device but not on the mobile device. On the other hand, dew
servers, if introduced, should be on the mobile devices.

Therefore, the formal description of edge computing could
be developed in a similar manner as the development of
dew computing formal description, but including the network
topology.

VII. CONCLUSION

In this paper, we have introduced a formal specification of
the dew computing concept.

Dew computing is based on delivering of (micro) services
by a dew server, functioning independent of a wider Internet-
based environment, although it can collaborate with other
cloud servers in the case of Internet availability.

Our definition of a server that delivers a service is based
on a mathematical specification of a Turing machine, adapted
to the availability of internal and external resources. In this
sense, internal resources are defined as memory that specifies
an internal state of the dew server, while the external resources
are defined by other services that depend on the availability
of the Internet.

Using our introduced formal specification, we have pre-
sented examples of simplified systems, including internal
memory, and external servers that deliver external services to
enable external data to our analyzed service. This completes
the formal specification, as it uses a recursive definition of a
memory and external servers by its initial definition.

In addition, we have compared edge computing and dew
computing with regards to our definition, and indicated the

essential difference between dew computing and edge com-
puting.

For future research, the first task would be to fine-tune
the definition of a dew server system. We have noticed that
one feature of dew server system has not been grasped by
Definition 2. This feature is restricted client access to the dew
server. Because such feature involves the overall description
of the client-server systems, we postpone such discussion to
a later time. Future research may also involve the analysis of
performance issues that could provide a better insight into our
formal specification.

REFERENCES

[1] Y. Wang, “Cloud-dew architecture,” International Journal of Cloud
Computing, vol. 4, no. 3, pp. 199–210, 2015.

[2] A. Bahtovski and M. Gusev, “Cloudlet challenges,” Proceedia Engineer-
ing, vol. 69, pp. 704–711, 2014.

[3] M. Gusev and S. Dustdar, “Going back to the roots: The evolution of
edge computing, an IoT perspective,” IEEE Internet Computing, vol. 22,
no. 2, pp. 5–15, 2018.

[4] Y. Wang, “Definition and categorization of dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 3, no. 1, pp. 1–7, 2016.

[5] P. P. Ray, “An introduction to dew computing: Definition, concept and
implications,” IEEE Access, vol. 6, pp. 723–737, 2018.

[6] K. Skala, D. Davidovic, E. Afgan, I. Sovic, and Z. Sojat, “Scalable
distributed computing hierarchy: Cloud, fog and dew computing,” Open
Journal of Cloud Computing (OJCC), vol. 2, no. 1, pp. 16–24, 2015.

[7] S. Ristov, K. Cvetkov, and M. Gusev, “Implementation of a horizontal
scalable balancer for dew computing services,” Scalable Computing:
Practice and Experience, vol. 17, no. 2, pp. 79–90, 2016.

[8] A. Rindos and Y. Wang, “Dew computing: The complementary piece
of cloud computing,” in Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom)(BDCloud-SocialCom-SustainCom),
2016 IEEE International Conferences on. IEEE, 2016, pp. 15–20.

[9] M. Gusev, “A dew computing solution for IoT streaming devices,” in
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO), 2017 40th International Convention on. IEEE, 2017,
pp. 387–392.

[10] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading Mass, 1979.

[11] L.-J. Zhang, J. Zhang, and H. Cai, Services computing. Springer Science
& Business Media, 2008.


