
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

14

Enhancing Usability of Cloud Storage Clients with

Dew Computing

Tushar S Mane.

TASM2M,

Total Automation Solutions,

Pune, India.

tushar.mane@tasind.com

Himanshu Agrawal.

Department of Computer Science,

Symbiosis Institure of Technology,

Pune, India.

himanshu.agrawal@sitpue.edu.in

Gurmeet Singh Gill.

Brand Manager,

Delicious Tiffin Pvt. Ltd.,

Pune, India.

gurmeet@delicioustiffin.com

Abstract— Cloud storage services like Dropbox, Google

Drive, Microsoft One Drive have been active and improving

unceasingly since 2007. Introduction of desktop/ mobile clients,

for example, ‘Dropbox Desktop’ are the cherry on top, as the

users could lever their cloud space from their desktops or

mobiles, giving them elegant feel with the file system and

storage present on their device. Whatever happens on the

device reflects back on cloud space with the corresponding

linked account, and vice versa. We can ‘partially’ say that the

computation has been brought down to the ground by such

clients. Though this has extremely augmented the user

experience, there are still some parts which need to be put in

place to complete the picture. This paper highlights some of the

missing pieces (offline version management, offline file sharing.

and access control list, file URL generation etc.) and their

resolutions, which can further improve the usability of the

cloud storage clients taking, them towards the completeness.

As this is a seamless demonstration of computation happening

at device level when there is an intermittent internet

connectivity, and then handshaking back with the cloud as it

gets connected back to the internet, i.e. Dew Computing, we

are referring it as Dewbox. This is one of the many, yet

enclosed features of on-device computing, and hence we

attempt to encourage researchers to expose possible

mechanisms which would utilize the device’s potentials to its

best. As per the knowledge of authors, this is the first ever

attempt till date which traces the missing features of cloud

storage clients.

Keywords—Cloud Computing, Fog Computing, Dew

Computing, Cloud Storage, Version Management, Dropbox,

Google Drive, One Drive.

I. INTRODUCTION

Storage was the fundamental aspect of Cloud Computing
[1] that made it so widespread and beneficial, as it came up
with the notions such as Horizontal and Vertical Scaling [2].
Compute services followed the storage services and so do the
other services. Latency, security, and privacy are still the
foremost concerns of Cloud Computing [3]. To address these
issues, Fog Computing [4], which is proximal to devices is
presented. Developments in embedded computing [5] have
now made devices remarkably powerful. Quantum
computing is already knocking the doors [6]. Dew
Computing [7] focuses on utilizing device capabilities,
especially when those are offline. Dew Computing can be
defined as on-device computing, which is not only
independent of Cloud Computing but also collaborative with
it. Independent means device should work in the absence of
internet connectivity, while collaborative meaning whatever
happened in absence of internet connectivity is synced
appropriately and in order with the cloud as soon as the
device gets connected back to the internet. While
investigating Storage in Dew (STiD) category [8], we found
one of the important missing functionalities, offline version

management. Almost 15 GB space is allocated for an
unlimited period in free tier. So, students, freelancers, small-
scaled or medium scaled organization’s developers prefer it
as a workspace for their source codes. The purpose is to have
cloud as well as a local copy of workspace, so that
developers can code online, offline, and at the same time
they don’t have to worry about version control, which is
default feature of cloud storage services. Version
management [9] allows one to work freely, without worrying
about possible mistakes. One can just switch back to the
previous or next version as and when it is necessary. It also
offers huge relief on maintenance/ reuse side, one can just
restore an applicable version, modify it and get objectives
completed. Apart from developers, there are other users (who
don’t care about versions/ maybe sometimes they do) of
storage clients too, who are interested in storing documents,
sharing those with any person of choice, on the move. These
users can also get benefited by having Dew Computing as an
add-on in their storage clients. The sole purpose of the paper
is to demonstrate, how missing functionalities of any
software client or tool, which are collaborated with the cloud,
can be discovered to take them towards completeness, and
then unleash the power of devices to achieve the necessary
computing i.e. Dew Computing. This is just one of the
million possible compute examples to showcase the
influence of Dew Computing, and attempt to promote the
immense scope in Dew Computing Research.

 The paper is structured as follows, second section
illuminates Dew Computing to its state of art in a
comprehensive manner. The third section enlightens the
issues in the current cloud storage clients with the example
of Dropbox, while the fourth section proposes the extension
to ‘Storage in Dew (STiD)’ category of Dew Computing to
resolve the issues in the current model of cloud storage
clients. In the same section, we essentially propose the
architecture of Dewbox. Please note implementation
guidelines of only the missing features are given. We
conclude the paper in the fifth section along with future
directions.

II. DEW COMPUTING: STATE OF ART

Current Dew Computing Research revolves around four
principal visions by various researchers involved in Dew
Computing. However, all forks joining at one common
feature, on-device computing which is collaborative with
upper layers of computing. Associate Professor, Dr. Yingwei
Wang, School of Mathematical and Computational Sciences,
University of Prince Edward Island, Canada, states it as a
computing residing on the ‘on premise’ computer, which is
independent of cloud in offline mode, while collaborative
with the cloud in case of online mode [8]. Whatever
happened during offline mode would be synchronized and
correlated back with the cloud in the subsequent online

15

mode. The following diagram (fig. 1) depicts the proposed
Cloud-Dew Architecture, wherein any device in the local
network will be served by corresponding Dew Server.
Devices can still avail minimal set of services or frequently
used functions from the Dew Server for unbroken
computing.

Fig. 1. Cloud- Dew Architecture.

The key objective is to facilitate with the services to users
even if there is no internet connection. The use case has been
classily demonstrated with the category Web in Dew (WiD)
[10], wherein user can still access the website in absence of
network connectivity. Key set of minimal functions are still
served by ‘on premise’ server with the help of application,
web, and database server running on it. Example, you can
browse your Facebook posts and pictures in your spare time
even if you don’t have an active internet connection. Further,
Dr. Yingwei Wang has categorized this generic architecture
into several type of services, so that parallel research work
can be started for rapid growth of Dew Computing. In this
paper we explore Storage in Dew (STiD).

 Second research involvement on Dew Computing is
directed by Dr. Karolj Skala, Professor at Rudjer Boskovic
Institute, Zagreb, Croatia. He proposes Dew Computing to
be Context as a Service (CaaS) to offload Cloud Computing
[11]. Context as a Service (CaaS) involves processing data at
ground, and provide a meaningful context to the cloud. This
will surely be a helping hand to the cloud servers. This
would scale computing power drastically (fig. 2) and will
open doors to solutions to the various computing problems
which were considered to be hard to solve till now.

Fig. 2. Scalable Computing Hierarchy [11].

Going forward, the professor has coined the terms
Distributed Information Service Environment (DISE), Global
Information Processing Environment (GIPE) and Low Power
Low Information Processing (LPLIP) as agents of massively
distributed and connected physical things.

 Dr. Sasko Ristov, Institute of Computer Science,
University of Innsbruckalso, has similar vision of utilizing
maximum resources at the roots, for information processing,
before computation is handed over to the cloud. Researcher
proposed ‘computation scalability mechanism and its load
balancing’ in his research work [12].

 Recently, Mr. Partha Ray extended Dr. Yingwei Wang’s
Cloud-Dew Architecture and introduced some terms to
support the extended model [13]. He aims to have
lightweight ‘Dew Server’ on client itself, which should serve
one client at a time, and store most frequently used functions.
In case of data loss, the ‘Dew Server’ should be able to
recover from cloud server from the last checkpoint. Local
copy of data should be as small as possible which is referred
as ‘Dew Site’. The refinement consists of how ‘Dew Site’
can be modified by ‘Dew Client’. ‘Dew Script’ is a web
script file, which will be used for modification of ‘Dew Site’.
These modifications will be supervised by a ‘light weight
web come application controller’ called ‘Dew Analyzer’,
which will be responsible for maintaining the ‘Dew Site’
state in respective database(s) present in Database
Management System on the ‘Dew Server’. The operational
details are made clear by 1:1 and 1: N mappings between
‘Dew Server’ and ‘Dew Site’ as shown in fig. 3.

Fig. 3. Mappings Between Dew Server(s) and Dew Site(s) [13].

Last but not the least, in our (me and Dr. Himanshu
Agrawal) recent paper [14], which clubs Cloud-Fog-Dew
Computing paradigms in to one Service Computing
Ecosystem, we shown how Dew Computing can
considerably reduce the computational latency. One of the
key properties of Fog Computing is its heavy geographical
distribution to support the scalability [15]. This geo-
graphical distribution comes with the maintenance overload

16

and hence the possible computing outage. So we put forward
a ‘Dew Node Architecture’, which enables ‘Dew Node’ to be
a Service Provider or Consumer. Fig. 4 shows architecture of
‘Dew Node’.

Fig. 4. Dew Node Architecture [14].

So, in case Fog Computing layer fails to provide service to
the end devices, one end node, which now becomes ‘Dew
Node’ will provides service to other end node i.e. ‘Dew
Node’ with contextual intelligence embedded in them.

III. CLOUD STORAGE CLINETS: THE MISSING ELEMENTS

As stated before, this paper emphasis on Storage in Dew
(STiD) class of Dew Computing. Existing functions of cloud
storage clients are well versed, well established, and stable.
But, there are some major missing features, which we trace
in this section. Please note very carefully, that we have
chosen Dropbox for demonstration purpose, as Dropbox is
implemented entirely using open source technologies.
However, same issue can be reproduced on Google’s backup
and Sync (Previously Google Drive Desktop) and
Microsoft’s One Drive and any other cloud storage client.

A. Version Management

We illustrate the conflict between local and cloud

versions lucidly with the help of small experiment done on

Dropbox. Please note the folder structure, text editor and

symbols. File is stored in Dropbox folder, the special space

created on user’s device after installing Dropbox client. We

have used ‘nano’ editor, but any text editor would do. Green

tick indicates local copy is in sync with cloud, while cycle

symbol indicates, it not synced yet (or syncing under

progress).

User creates file ‘DewBox.c’ on his device (in Dropbox

folder, as shown in fig.5) and it is synced with its cloud

space as there is active internet connection. (Version 1, On-

device)

Fig. 5. File is Created (Online, On-device, Version 1).

Instantly, cloning happens on Dropbox cloud with your
linked account (Version 1- Cloud), fig. 6.

Fig. 6. File Create Operation Clonned (Cloud, Version 1).

Program description, Author info, and Date is added in
program while online, file is saved and closed (Meta Data
Added- Version 2, On-device), fig. 7.

Fig. 7. Meta Data is Added in File (Online, On-device ,Vesrion 2).

With internet connection available, changes are reflected on
respective cloud space (Version 2- Cloud)- Fig. 8

Fig. 8. Meta Data Reflected (Cloud, Version 2).

Now, internet connection is disconnected deliberately and
local file is added with some statements and saved, fig. 9.
(Version 3, On-device)

Fig. 9. Statements are Added in File (Offline, On Device, Version 3).

17

Again, without internet connection, statements in the file are
modified and changes are saved, fig. 10. (Version 4, On-
device)

Fig. 10. Some more Modifications in file (Offline, On-device, Version 4).

Now, file is modified again and internet is enabled. (Version
5, On-device)- fig. 11.

Fig. 11. Some Chnages are made and then Connected to Internet (Vesrion 5).

Immediately, file is synced with cloud and digital twin is
created as shown in fig. 12 (Version 5).

Fig. 12. File gets Synced (Cloud, Version 3).

Here’s the serious problem. What about Version-3 and
Version-4? If student/ developer/ freelancer relies on
‘anytime & anywhere’ feature of cloud, and does some work
at home (or on another device). Next day he goes to office
(or changes the device), and now wants to restore the
program back to Version-3 or Version-4, how can it be
done? Versions which were created, when he was
unknowingly not connected to the internet are lost, right?
Now, this is a very small and simple example (just for
demonstration). In real world there are dependencies among
files/ modules, critical functionalities, a lot of automatic
documentation, and many more factors are involved. This is
severe missing part of a system. Now let’s have a look at
possible add-ons.

B. Enhanced File Operations (File sharing, File Link

Generation, Access Control List etc.)

Roaming people (sales and marketing, business

development, site support, to name a few) or even other

people/ students, who frequently need to share the

documents, keep adding (or removing) people to (or from)

shared list (Access Control List) or share a public file URL,

might not always have an active internet connectivity, may

be due to absence of network, low bandwidth or end of

mobile data quota. In such situations most of the people

generally tend to forget completing this to-do list. Fig. 13.

shows current online operations users can do via client.

Fig. 13.Current Options in Cloud Storage Clients (e.g. Dropbox)

So, an add-on which enables these pending tasks to be

queued in offline mode, so that they can just do these kinds

of activities on the move, without having to maintain this to-

do list in their mind or a diary, would remarkably increase

the usability of cloud storage clients.

Next section explains, Dewbox architecture/ implementation

guidelines and how it can overcome above issues.

IV. DEWBOX: TOWARDS COMPLETENESS OF CLOUD STORAGE

CLIENTS

As mentioned before, all current features of cloud storage
clients are well established, well versed, and stable. So
architecture and implementation guidelines of Dewbox only
focuses on offline version management, file sharing, URL
generation and access control list.

Fig. 14. Proposed Architecture for traced Missing Functionalities/ Add-ons

Architecture, fig. 14, mainly consists of two components,
‘Dewbox Controller’ and ‘External Co-workers’. ‘Dewbox
controller’ contains a component called ‘VMS (Version
Management System) Interface’, which pulls out all the
version history of any file from the external version

18

management system (e.g. Git or Subversion) [16] [17] and
shares it with cloud storage server, with the help of ‘Cloud
Interface’, fig. 15, whenever you get connected to the
internet. So a fine grained version history of any file or set of
files can be maintained. Open source version management
systems like Git or Subversion would be installed along with
Dewbox, and VMS interface will trigger repository
initialization, querying the repository and deletion of the
repository automatically in the background, based upon file
operations done by user.

Fig. 15. Handshaking between Cloud Interface Module and Cloud Server.

 Add-ons like ‘Offline File Sharing, Link Generation and
Access Control List’ are taken care by the second component
of ‘Dew Controller’, the ‘Job Scheduler’. ‘Job Scheduler’ is
Simple Queue Data Structure Implementation for which data
elements are filled from the file-based Database
Management System like SQLite [18]. Whatever operations
are scheduled in offline mode by user, are put in a table
called ‘job_queue’. This table would be queried by ‘Job
Scheduler’ to populate the job queue.

 There would be three other tables in database, one for
storing contact list of the linked account, other for list of files
and their access control, and lastly for storing file URLs and
access control. Whenever user says, I want file ‘A’ to be
shared with person ‘XYZ’ with ‘Read-Only’ permission, a
job will be created by selecting contact ‘XYZ’ from
‘contact_list’ table, file ‘A’ from ‘files’ table, inserting them
in a ‘job_queue’ table with operation as ‘share’ and
permission as ‘Read Only’. ‘Job scheduler’ reads this table,
put the jobs in queue and whenever device gets connected to
the internet, it hands over this queue to the cloud server via
‘Cloud Interface’. ‘Cloud interface’ packs these jobs in such
a manner that those would be understandable by ‘Cloud
Server(s)’.

V. CONCLUSION AND FUTURE DIRECTIONS

 Cloud Storage has become prevalent with Cloud

Storage Clients, which allows users to do file operations on

their devices, irrespective of file system, even in absence of

network connectivity. Operations done in offline mode are

later get synced with the linked cloud storage. This

phenomenon perfectly fit in with definition of Dew

Computing, which states, computing which is independent

and collaborative with cloud. Hence, Cloud Storage Clients

such as Dropbox Desktop, Google Drive Desktop (Now

Back up and Sync), Microsoft’s One Drive, are categorized

under Storage in Dew (STiD) class of Dew Computing. But

the critical function of version management, which could

lead to some serious issues, was still absent. Also, usability

of such clients can also be increased by the offline

extensions like File Sharing, URL Generation and Access

Control List. In this paper, we attempt to trace these missing

features and add-ons. We also suggest an architecture and

implementation guidelines for the same. We name it as

Dewbox, which would take Cloud Storage Clients towards

completeness.

 The only purpose behind the paper is to demonstrate how

various software or hardware clients or tools, which are

connected to the cloud, can be made more independent and

collaborative by utilizing resources present on them for

increasing their usability. Dew Computing is surveyed in a

broad manner to appeal researchers to come forward and

contribute in this growing area, which will drastically

offload cloud servers and provide seamless computing even

in unexpected interruptions in Fog Computing layer.

 We highly anticipate implementation of this paper as a

foremost future work. We have not focused on security

portion of Dewbox, which could mean, opening the Dewbox

folder with credentials or securing file-based database

system which we have recommended or more. We highly

encourage to explore hardware clients like Arduino and

other embedded boards for Dew Computing Research as

Internet of Things, Quantum Computing are already here

and we want Dew Computing to be essential bit of those.

REFERENCES

[1] Yuhang Yang and Maode Ma, “A Survey of Cloud Computing,”
Proceedings of the 2nd International Conference on Green
Communications and Networks 2012 (GCN 2012), Volume 3.
pp 79-84. 2013.

[2] Chien-Yu Liu, Meng-Ru Shie , Yi-Fang Lee, Yu-Chun Lin and Kuan-
Chou Lai, “Vertical/Horizontal Resource Scaling Mechanism for
Federated Clouds,” International Conference on Information Science
& Applications (ICISA), 2014.

[3] Danilo Ardagna, “Cloud and Multi-cloud Computing: Current
Challenges and Future Applications,” IEEE/ACM 7th International
Workshop on Principles of Engineering Service-Oriented and Cloud
Systems, 2015.

[4] Mohammad Aazam and Eui-Nam Huh, “Fog computing: The Cloud-
IoT/IoE middleware paradigm,” IEEE Potentials. May/June, 2016.

[5] Jing Huang, Renfa Li, Jiyao An, Derrick Ntalasha, Fan Yang and
Keqin Li, “Energy-Efficient Resource Utilization for Heterogeneous
Embedded Computing Systems,” IEEE Transactions on Computers,
2017, Volume: 66, Issue: 9.

[6] Charles Day, “Quantum Computing Is Exciting and Important--
Really!,” Computing in Science & Engineering, 2007, Volume: 9,
Issue: 2.

[7] Andy Rindos, Yingwei Wang, “Dew Computing: The
Complementary Piece of Cloud Computing,” IEEE International
Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable
Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), 2016.

[8] Yingwei Wang, “Definition and Categorization of Dew
Computing,” Open Journal of Cloud Computing (OJCC),
Volume 3. Issue 1, 2016.

[9] B. Westfechtel, B.P. Munch and R. Conradi, “A layered architecture
for uniform version management,” IEEE Transactions on Software
Engineering, 2001, Volume: 27, Issue: 12.

[10] Yingwei Wang and David Leblanc, “Integrating SaaS and SaaP with
Dew Computing,” 2016 IEEE International Conferences on Big Data
and Cloud Computing (BDCloud), Social Computing and Networking
(SocialCom), Sustainable Computing and Communications
(SustainCom) (BDCloud-SocialCom-SustainCom), 2016.

[11] Karolj Skala and Davor Davidovic, “Scalable Distributed
Computing Hierarchy: Cloud. Fog and Dew Computing,” Open
Journal of Cloud Computing (OJCC) Volume 2, Issue 1, 2015.

[12] Sasko Ristov, Kiril Cvetkov, and Marjan Gusev, “Implementation of
a Horizontal Scalable Balancer for Dew Computing Services,”
Scalable Computing: Practice and Experience, 2016, Volume 17,
Number 2, pp. 79-90.

19

[13] Partha Pratim Ray , “An Introduction to Dew Computing: Definition,
Concept and Implications," IEEE Access, 2018, Volume: 6.

[14] Tushar S Mane and Himanshu Agrawal, “Cloud-fog-dew architecture
for refined driving assistance: The complete service computing
ecosystem”, IEEE 17th International Conference on Ubiquitous
Wireless Broadband (ICUWB), 2017.

[15] Amir Vahid Dastjerdi and Rajkumar Buyya, “Fog Computing:
Helping the Internet of Things Realize Its Potential,” IEEE Computer,
2016, Volume: 49, Issue: 8.

[16] https://git-scm.com/

[17] https://subversion.apache.org/

[18] https://www.sqlite.org/index.html

	I. Introduction
	II. Dew Computing: State of Art
	III. Cloud Storage Clinets: The Missing Elements
	A. Version Management
	B. Enhanced File Operations (File sharing, File Link Generation, Access Control List etc.)

	IV. Dewbox: Towards Completeness of Cloud Storage Clients
	V. Conclusion and Future Directions
	References

